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1. Introduction

"Topological Freezing" is one of the big obstacles encountered when simulating lattice QCD
on a torus at ever smaller lattice spacings. It leads to extremely long autocorrelation times of
important observables when the continuum limit is approached. The prime example of an affected
observable is the topological charge Q. It is given as the integral

Q =
∫

M
d4xq(x) (1.1)

of the topological charge density

q(x) =
1

4π2 εµνρσ tr
(
Fµν(x)Fρσ (x)

)
(1.2)

over the manifold M of space-time. Usually M is simply the torus T4. On a finite torus in the
continuum this topological charge is discretized for every given gauge configuration. It can only
take on values from an equidistant spectrum and is normalized such that it assumes integer values.
The charge is a topological invariant meaning that a small change in the field configuration cannot
change the value of Q. The discretization of the observable means that the field space is separated
into a countably infinite number of disconnected sectors labeled by the topological charge. For
any finite lattice spacing these properties are realized only up to lattice artefacts and the sectors
are separated by a finite action barrier. On the way to the continuum limit, however, this barrier
grows large to give the infinite action barrier in the continuum. In particular it grows fast enough
to cause trouble for the usual Monte Carlo algorithms which perform small steps in field space
with a corresponding small change in the action: the integrated autocorrelation time τint of modes
coupled to the topological charge diverges, the different sectors of field space cannot be sampled
for affordable Monte Carlo stream lengths and ergodicity is lost. This leads to systematical errors
in the measurement of observables which cannot be estimated from the data.

The main idea to be explored in these proceedings is to use instead of the torus T4 a different
space-time manifold M which is non-orientable. The reasoning to experiment with that goes like
this: Topological freezing is rooted in the topological structure of field space. The topological
sectors which build this structure are labeled by a pseudoscalar quantity, the topological charge Q.
Furthermore, a pseudoscalar transforms non-trivially under the change of orientability of space-
time.

There are several alternative proposals in the literature to deal with topological freezing, like
performing fixed charge simulations [1], manually increasing tunnelling with an additional term in
the action and reweighting back to the original theory [2], or using subvolumes for measurement,
as the topological charge on a subvolume is not discretized [3]. The authors of [4] propose "meta-
dynamics" simulations: They use a simulation history dependent potential in the action, which
punishes sticking to a given topological sector, and reweight back to the original theory. In [5]
multiscale equilibration is proposed. Here thermalization is done at a coarser lattice spacing where
topology still changes frequently and after that prolong the coarse lattice to a fine lattice spacing.
Repeating this gives an ensemble of fine configurations with the well sampled topological charge
distribution of the coarse lattice spacing. The most widely accepted method is to use open boundary
conditions [6].
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2. P-boundaries

The topological structure of field space depends on the topological structure of the gauge group
and on the topological structure of space-time. In the open boundary case the topological structure
of space-time is changed by replacing one of the periodic directions with a direction with open
boundaries, i.e. with Dirichlet boundary conditions for the fields. This also changes the topology
of field space, which can be shown to be connected. The intuitive picture is that the quantized
charges localized in instantons and anti-instantons can move freely through the open boundaries
of space-time and thereby connect the discrete sectors, whereas on the torus these charges are
conserved due to the periodicity of all directions.

While rather elegant in principle, the solution by open boundaries has some additional effects,
which – depending on the application – can be problematic. Translational invariance is broken
strongly by the boundaries, physics is different at the boundary, and boundary effects propagate into
the bulk of the lattice and can contribute systematic deviations to observables. It would therefore
be desirable to find a different change in the topology of space-time without any local changes of
space-time.

This poses the question of what changes can be made to a manifold without changing the
local structure. A quite obvious construction of some possibilities offers itself while constructing
a torus from the base manifold by a choice of the boundary conditions. Lets consider the two
dimensional case for simplicity. The starting point is a rectangle. Then one can identify the opposite
pairs of edges with each other, aka gluing them together to obtain a torus. But during gluing one
made a choice not to flip one of the edges before gluing them together. If one flipped one edge
once, one would have ended up with a manifold different from the torus, but locally identical to
the torus everywhere: the Klein bottle. The most striking feature of the Klein bottle is that it is
non-orientable. If one glues together with a flip only one pair of edges and leaves the other pair
open, one ends up with a Möbius strip, which is also non-orientable. The torus, the ring which
emerges when gluing two sides together without a flip leaving the other sides open, and also the
base manifold, the rectangle, are orientable. A manifold is called orientable if one can define
consistently a coordinate system with well defined handedness on the complete manifold. This is
equivalent to the non-existence of special closed paths on the manifold with the following property:
A right-handed system when transported continuously around such a special path becomes a left-
handed system with respect to a stationary system. The concept is illustrated in Fig. 1. Note that
locally the closed orientable and non-orientable manifolds are indistinguishable.

Combining this feature with a property of the topological charge and its density leads directly
to a candidate for a change of the topology of space-time which could solve the topological freezing
problem without tampering with the local structure of space-time: The charge is pseudoscalar, i.e.
parity P-odd, and therefore transforms under a change of orientation by changing its sign. The
sector changing effect of this change can be made obvious in the instanton picture similar to the
open boundary case: If one follows the movements of a topological charge density fluctuation
around one of the special closed loops on a non-orientable manifold, i.e. along a flipped direction,
the sign of the fluctuation changes. If the fluctuation had the charge +1, it arrives after one round-
trip with a charge of −1, changing the total charge by −2. As the movement of the fluctuation
around the special path was continuous, the total charge assumed all values between the initial and
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Figure 1: Visualization of a ring as an orientable manifold at the left hand side and a Möbius strip as a
non-orientable manifold on the right hand side. On a non-orientable manifold there exist closed paths which
change orientation.

final value – assuming the total charge is well defined. The dynamics of the topological charge
density is visualized in Fig. 2.

Figure 2: Visualization of the dynamics of a topological charge lump on an orientable manifold on the left
hand side and on a non-orientable manifold on the right hand side. For non-orientable manifolds there are
paths where the sign of the topological charge lump (visualized by its color) changes its sign.

This is exactly the effect which is exploited in the proposal of P-boundaries. They are a specific
prescription to change the orientation of the manifold in a physically consistent way. To implement
P-boundaries one has to

• perform an additional flip while gluing together one of the periodic boundary conditions of
the usual torus and

• implement an additional parity transformation P on all fields in the boundary condition.

In this work only the t direction is used as a P-periodic direction. Also, instead of a full parity
transformation with reflections of all three spacial directions (which are non-trivial to implement
on parallel computers), only the single coordinate x is reflected. This is equivalent to a parity
transformation followed by a rotation by 180◦ which is sufficient for this purpose. In the pure
gauge case the transformation of the fields for translations in the P-periodic direction is

Ux(x,y,z, t +T ) =U†
x (L− x−1,y,z, t),

Ui(x,y,z, t +T ) =Ui(L− x,y,z, t)
(2.1)
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for i = y,z, t. In the other three directions the usual periodic boundary condition is kept.
The resulting manifold can be visualized on the universal cover, Fig. 3. The universal cover in

the 2D case is just R2. The base manifold is some rectangle in the universal cover. The boundary
conditions yield rules for identification of equivalent points on the universal cover. This figure
illustrates the neighbourship relations of points on the base manifold and its replicas in periodic
and P-periodic directions. In particular it illustrates that there are no locally special points in this
construction which can spoil translation invariance and induce large effects on local observables.
There are, however, special points along the direction which is reflected: a reflection needs a center
of reflection. This point (and distances to this point) can in principle be measured by its effects
on particles propagating once around the P-periodic direction. If there is a mass gap for P-odd
propagating states in the theory, then these effects are expected to be exponentially small in the
product of the mass gap times the size of the direction.[8]
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Figure 3: The universal cover for P-periodic boundary conditions in time direction for the two dimensional
case. The base manifold is the T × L rectangle. In spatial direction it is replicated periodically, while in
P-periodic direction it is replicated with a reflection. This reflection is here performed with the line x = L/2
as center. The numbers and colors label identified points of the universal cover including their orientation.

Up to this point the focus of the construction was on the conservation of local symmetries. But
there are also important global consequences of the change of orientability. The most important
consequence is that integration over the complete manifold cannot be defined via a volume form,
as there is no volume form on a non-orientable manifold. One can still construct the integration
of scalar densities using a volume element and get the usual expression for the total action from
the action density. One cannot, however, define the integration of pseudoscalar densities like the
topological charge density q(x) to give a unique meaning to a global topological charge. One
can of course define integration of pseudoscalar densities on every orientable submanifold of a
non-orientable manifold. This can be used to define a total charge Qm on a maximal oriented
submanifold

Qm =
∫ T

0
dt
∫

d3xq(x), (2.2)

where a cut in t direction is introduced formally. This cut is only there for the definition of certain
observables, which e.g. require the integration of a pseudoscalar over the complete manifold, it
is not a physical cut in space-time. In particular, one can define a continuous family of such Qm

observables corresponding to all positions of the cut along the t direction. Note that this expression
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for the total charge Qm is the same as for the open boundary case with the important difference,
that the cut in that case is physical. For the case with periodic boundary conditions the expression
for Qm is exactly the usual total topological charge. As we are mostly interested in comparisons
between the periodic, open, and P-periodic cases here, we will drop the index "m" and define
Q := Qm.

3. Quenched Data

After introducing the general idea of QCD on non-orientable manifolds, this section is about
numerical tests of P-boundaries in the quenched case and their comparison to periodic and open
boundaries. For this comparison ensembles of gauge configurations were generated with identical
parameters for the three choices of boundary conditions. For the topological freezing the depen-
dence on lattice spacing is the most relevant information. Therefore the physical volume for the
runs is kept approximately fixed L = T ∼ 2.27/Tc, while the lattice spacing is decreased consid-
erably. The gauge action is Symanzik improved and a sweep consists of one heatbath plus four
overrelaxation steps. The parameters of the ensembles are given in Tab. 1.

L/a β w0 a[fm] nsweep

16 4.42466 1.79 0.093 2×4001
20 4.57857 2.24 0.075 3×4001
24 4.70965 2.65 0.063 4×4001
32 4.92555 3.43 0.049 10×4001
40 5.1 4.13 0.040 19×4001

Table 1: The parameters of the quenched simulations used to compare the different boundary conditions. L
is the spatial lattice size, β the gauge coupling, w0 the Wilson flow based length scale, a the lattice spacing,
and nsweep gives total number of sweeps as product of the number of sweeps between measurements and the
number of measurements.

A first qualitative impression can be taken from the history of the topological charge Q. Such a
comparison is given in Fig. 4. One can readily see from the figure that at the lattice spacing shown
the typical symptom for topological freezing on periodic boundaries appears: many consecutive
updates without changes in topology. For open and P-periodic boundaries the charge changes much
more frequently than for periodic boundaries and does not show visible quantization of Q. This can
be substantiated by a plot of the corresponding histogram of the charges of the same histories, given
in Fig. 5: Q is quantized only for periodic boundaries, but not for open or P-periodic boundaries.

The next observation concerns the scaling of the integrated autocorrelation time of the topo-
logical charge τint(Q) with the lattice spacing. This is given in Fig. 6. It shows that the increase
in autocorrelation time with decreasing lattice spacing is largest for the periodic case while the
scaling is identical for the open and P-periodic setting. For the smallest three lattice spacings in the
periodic case the streams were not even long enough to get a good measurement of τint(Q).

The measurements presented above suggest, that open and P-periodic boundary conditions
show a similar improvement regarding the topological freezing problem. But the motivation to set
up QCD on a non-orientable background was not only to reproduce the advantages of open bound-
aries but also to get rid of local space-time symmetry breaking effects. This is indeed achieved
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Figure 4: History of the topological charge Q for β = 5.1, lattice spacing a = 0.040 fm, and box size 1.6 fm.
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Figure 5: Histogram of the topological charge Q for β = 5.1, lattice spacing a = 0.040 fm, and box size
1.6 fm.
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Figure 6: Dependence of the integrated autocorrelation time of the topological charge τint(Q) on the lattice
spacing. The box size is 1.6 fm.
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and illustrated in Figs. 7 and 8. The figures show measurements in dependence of the time slice
at which they are evaluated. The dependence of the action density in Fig. 7 shows that the values
for the periodic and P-periodic case are within errors consistent with each other and independent
of the time slice, while the result for open boundaries shows significant deviations from transla-
tional invariance which are especially pronounced near the boundary. For large enough lattices it
is expected, that the values from open boundaries become consistent with the ones from periodic
boundaries at sufficient distances from the boundary. Fig. 8 displays the measured autocorrelation
time of the topological charge per time slice. This also shows significant deviations of translational
symmetry for open boundaries, but not for periodic or P-periodic boundaries. For the center of
the lattice, where boundary effects are small for the open case, open and P-periodic lattices show
a comparable autocorrelation time, which is much smaller than the autocorrelation time on the
periodic lattice.

0.24

0.26

0.28

 0  10  20  30  40

w
4 0E

(t
)

t

periodic
open

P-periodic

Figure 7: Time slice averaged action density at β = 5.1, lattice spacing a = 0.040 fm, and box size 1.6 fm.
For comparison also the value for the whole lattice is given by the open symbol.
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Figure 8: Autocorrelation time of the topological charge of a time slice at β = 5.1, lattice spacing a =

0.040 fm, and box size 1.6 fm. For comparison also the value for the whole lattice is given by the open
symbol.

One might have expected that for this most local observable, the topological charge on a single
time slice, the autocorrelation time for the different boundary conditions are the same. That this is
different can be seen in the diffusion model of Ref. [7]. In this model the correlations in simulation
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time and euclidean time are described by a diffusion equation

C(t, t0,τ)≡ 〈Q(t + t0,τ0 + τ)Q(t0,τ0)〉 (3.1)

∂

∂τ
C(t, t0,τ) = D

∂ 2

∂ t2C(t, t0,τ)−
1

τtunn
C(t, t0,τ), (3.2)

where Q(t,τ) is the topological charge on a time slice t at simulation time τ , D a diffusion constant,
and τtunn the timescale for topological charge tunneling. The solutions of this equation determine
the integrated autocorrelation time and are determined by the symmetries of the boundaries (and
initial conditions). All cases considered here give even solutions in t and the boundary condition
determines the (anti-)periodicity of the solution in t as given in Tab. 2. For open boundaries an-
tiperiodicity or periodicity of the solution can be used only at the center of the lattice, as the two
nodes of the correlation at the boundary of the lattice can be formally taken as the nodes of an anti-
periodic solution. As the center of the lattice is the least affected by boundary effects this suffices
for the comparison here. Then both open and P-periodic settings give antisymmetric solutions for
the correlation function, while the periodic case shows a symmetric solution. In the interesting
limit of large tunneling time scale τtunn the zero mode allowed in the symmetric solution of the
periodic case leads to the domination of τint by τtunn. This shows that even for the autocorrelation
of time slices the topological freezing hits τint via τtunn – which is what is seen qualitatively in
Fig. 8. The two settings with asymmetric solution have no zero mode in the solution and their
autocorrelation time is in the same limit dominated by the diffusion of the topological charge and
thus does not diverge along with τtunn. The diffusion of topological charge is not hindered even
by the existence of exact topological sectors like in the continuum, so that – within this model –
the topological freezing problem defined as a diverging autocorrelation time of topological charge
density is solved for open and P-periodic boundaries.

Boundary Periodicity τint

Torus C(t +T, t0,τ) =C(t, t0,τ) ∝ τtunn

P C(t +T, t0,τ) =−C(t, t0,τ) ∝ D−1

Open t0 = T
2 "C(t +T, T

2 ,τ) =−C(t, T
2 ,τ)" ∝ D−1

Table 2: Symmetry of the solution of the diffusion model for the different boundary conditions and the
resulting limiting behaviour of τint for large τtunn.

4. Fermions

When we introduce fermions in the simulations with P-periodic boundary condition, the re-
flection in the x coordinate at the timelike boundary has to be applied to the fermion fields as well:

ψ (x,y,z) −→ iγ5γx ψ (L− x,y,z) . (4.1)

Then the factor γ5γx appears in the boundary terms, which ruins the γ5-Hermiticity of the Dirac op-
erator. As a consequence, the fermion determinant will be complex in general, making simulations
with algorithms based on importance sampling impossible.
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One possible solution to this situation is to include a charge conjugation additionally to the x
reflection: use CP-periodic instead of P-periodic boundary conditions. Since the topological charge
density is not only P-odd, but also CP-odd, the inclusion of C does not spoil the advantageous
features of the P-periodic boundary conditions.

The charge conjugation acts on the fermion and gauge fields as

ψ →Cψ
T , ψ →−ψ

TC and Uµ →U∗µ , (4.2)

respectively, where C = iγyγt is the charge conjugation matrix, and the asterisk denotes taking the
complex conjugate of each element of U .

4.1 Majorana basis

Charge conjugation swaps ψ with ψ , therefore, the fermionic action S = ψDψ has to be
rewritten in a form which treats ψ and ψ similarly. To achieve this we express the spinor fields in
the Majorana basis [8]: introduce the 8-component spinor fields

η =

(
η1

η2

)
=

1√
2

(
ψ +Cψ

T

−iψ + iCψ
T

)
=V

(
ψ

ψ
T

)
, where V =

1√
2

(
1 C
−i iC

)
. (4.3)

Charge conjugation acts particularly simply in this basis:

η →

(
η1

−η2

)
= ρ3 η , where ρ3 =

(
1 0
0 −1

)
, (4.4)

that is, η1 and η2 are eigenvectors of charge conjugation with eigenvalues 1 and −1, respectively.
The single flavor action in this basis takes the form

S = ψDψ =−1
2

η
T (V−1)T

(
DT

−D

)(
V−1)

η =−1
2

η
TCD̂η , (4.5)

where

D̂ =
1
2

(
D[U ]+CD[U ]TC iD[U ]− iCD[U ]TC
−iD[U ]+ iCD[U ]TC D[U ]+CD[U ]TC

)
. (4.6)

Let us introduce the hatted gauge links

Û =

(
Re(U) −Im(U)

Im(U) Re(U)

)
=
[
Re(U) ·12×2− i Im(U) ·ρ2

]
, (4.7)

where Re(U) and Im(U) denote the matrices obtained by taking the real and imaginary part of each
component of U , respectively.

The Wilson Dirac operator satisfies CD[U ]TC = D[U∗], and is linear in the links, therefore,
when Wilson fermions are used, the hatted Dirac operator can be written in the form

D̂ = D
[
Û
]
. (4.8)

That is, D̂ can be obtained from the original Dirac operator D by simply replacing the links U
with the 6×6 real matrices Û . Since the mapping U 7→ Û is a representation of the group SU(3),
equation (4.8) is valid not only for Dirac operators that are linear in the links, but is also valid
for operators that are linear in products of links, e.g. the clover improved Wilson Dirac operator.
Equation (4.8) is also valid in some more general cases, e.g. in the case of the overlap operator.

9
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4.2 CP-periodic boundary

The most transparent way to construct the CP-periodic boundary on the manifold M is to
work on its orientable double cover 2M . Let 2M be a four dimensional torus of size L3× 2T ,
with periodic boundary conditions in all directions for both the gauge fields and the fermionic
fields. We consider only those gauge field configurations on 2M , which satisfy the identities

Ux(x,y,z, t +T ) =UT
x (L− x−1,y,z, t),

Ui(x,y,z, t +T ) =U∗i (L− x,y,z, t), i = y,z, t.
(4.9)

The restriction of these gauge configurations onto the base manifold M are in a one-to-one corre-
spondence with the gauge configurations on M satisfying the CP-periodic boundary conditions.

If D is a Dirac operator on 2M that satisfies γ5Dγ5 = D†, then the Dirac operator on the base
manifold M will be given through a projection P, which projects onto the subspace of fermion
fields satisfying the desired CP-periodic boundary condition:1

Dx,y = 2(PDP)x,y x,y ∈M (4.10)

In order to describe the projection P, introduce a geometric transformation τ on 2M , which per-
forms a shift with T in the time direction, and a reflection in x:

τ


x
y
z
t

=


L− x (mod L)

y
z

t +T (mod 2T )

 (4.11)

Then the transformation we take for the fermionic fields is

(Tη)(x) =−γ5γxρ2ρ3 η(τx), (4.12)

which performs a shift in the time direction, a reflection in the x direction, and a charge conjugation,
as illustrated in Fig. 9.

0
0

L

x

T 2T
t

q

q q

q

Figure 9: Transformation T on the doubled manifold 2M : the fermionic fields are shifted by T in the time
direction, reflected in coordinate x, and are charge conjugated.

Since T satisfies
T† = T, T2 = 1,

[
D̂,T

]
= 0, (4.13)

1Let us fix the notation such that bold faced letters denote operators on the doubled manifold 2M , while letters in
italics denote operators on the base manifold M .
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we can define the projections P± = 1±T
2 , which select either the +1 or the −1 eigenspace of T.

Then we define the Dirac operator D̂± on M to be equal to P±D̂P± restricted to the range of P±.
That is, our Dirac operator on M is defined as(

D̂±
)

x,y =
(
D̂±TD̂

)
x,y = D̂x,y︸︷︷︸

bulk term

0

x
y

T

∓ γ5γxρ2ρ3 D̂τx,y︸ ︷︷ ︸
boundary term

0

y

x

T

τx

x,y ∈M . (4.14)

The bulk term connects fermionic fields at neighboring sites away from the CP-periodic boundary,
while the boundary term connects fermionic fields across the CP-periodic boundary. As will be
seen from the next subsection, the two choices D̂+ and D̂− are equivalent.

4.3 Positivity of the action

The integral of the fermionic action in the Majorana basis∫
dη exp

(
−1

2
η

TCD̂±η

)
= pf

(
CD̂±

)
(4.15)

is expressed through the Pfaffian of CD̂±. Since it is an antisymmetric matrix, we have

pf
(
CD̂±

)2
= det

(
CD̂±

)
= det

(
D̂±
)
. (4.16)

In order to see the positivity of pf
(
CD̂±

)
we need to look at the spectrum of D̂±.

Since the Dirac operator D̂ on 2M commutes with ρ2 and is γ5-Hermitian, it is also γ5ρ2-
Hermitian [9]

γ5ρ2D̂γ5ρ2 = D̂†. (4.17)

In addition, the transformation T defining the boundary condition commutes with γ5ρ2, therefore,
the projections P± preserve γ5ρ2-Hermiticity. Thus, the determinant of D̂±, which is equal to
P±D̂P± restricted to the range of P±, is real.

The transformation T anticommutes with ρ2, which has the consequence that ρ2 acts as a
similarity transformation between P+D̂P+ and P−D̂P−. Therefore, the spectrum of D̂ is equal to
the spectrum of D̂± with a multiplicity of two. Since D̂ is a usual Wilson-type Dirac operator on
a torus with usual periodic boundary conditions, the real parts of all of its eigenvalues are positive
close to the continuum. Therefore, the determinant of D̂± is positive, the real parts of all of its
eigenvalues are positive, and the eigenvalues are either real or come in complex conjugate pairs.
As a consequence, pf

(
CD̂±

)
> 0 [8].

4.4 Computing correlators

In order to compute correlation functions of fermionic variables, we need to express the op-
erators in the Majorana basis. As an example, the interpolating operators for the charged pion
are

Oπ− = ψuγ5ψd = −1
2

η
T
u γ5C (1−ρ2)ηd ,

Oπ− = −ψdγ5ψu =
1
2

η
T
d γ5C (1−ρ2)ηu. (4.18)
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Then the pion-pion correlation function between x and y becomes〈
Oπ−(x)Oπ−(y)

〉
=−1

4

〈(
η

T
u )xγ5C (1−ρ2)

(
ηd
)

x

(
η

T
d
)

yγ5C (1−ρ2)
(
ηu
)

y

〉
. (4.19)

In order to obtain the observable that has to be measured on the gauge configurations we need to
perform the Grassmann integral for the η fields∫

dη ηi1 ηi2 ηi3 ηi4 exp
(
−1

2 ηT Mη
)∫

dη exp
(
−1

2 ηT Mη
) =

1
8 ∑

σ∈S4

sgn(σ)
(
M−1)

σ(i1),σ(i2)

(
M−1)

σ(i3),σ(i4)
(4.20)

with M =CD̂. In the isospin limit we obtain〈
Oπ−(x)Oπ−(y)

〉
=

1
4

Tr
[(

D̂−1)
y,x ρ2

(
D̂−1)†

x,y ρ2 +
(
D̂−1)

y,x

(
D̂−1)†

x,y

]
. (4.21)

As an exploratory study, we have computed the pion propagator on 163× 32 quenched con-
figurations generated with CP-periodic boundary condition at β = 4.35 (w0 = 1.57). We applied 4
steps of stout smearing with ρ = 0.125, and used the Wilson Dirac operator with bare quark mass
m0 = −0.16. The propagator is shown in the upper panel of Fig. 10. The figure shows that the
backward propagation of the pion is suppressed. This suppression can be better understood if we
express the pion propagator using the quark propagator D̂−1 acting on 2M :〈

Oπ−(x)Oπ−(y)
〉
=

1
2

Tr
[(

D̂−1)
y,x

(
D̂−1)†

x,y

]
. (4.22)

The terms containing T cancel, the sources mirrored into the second half of 2M do not contribute.

10-6

10-4

10-2

100

 0  5  10  15  20  25  30

π(
t)

π(
0)

t

CP-periodic

0.272
0.276
0.280

0 8 16 24 periodic

mπ

Figure 10: Upper: Pion propagator with CP-periodic boundary condition. Lower: Testing translation
invariance: Pion masses obtained after shifting the gauge field by 0, 8, 16, and 24 units in t-direction (filled),
and with periodic boundary condition (open).

5. Discussion and Outlook

In these proceedings we have presented the idea to formulate lattice QCD on a non-orientable
background via P- and CP-periodic boundary conditions.2 We have shown in the quenched setting

2Some results present in these proceedings are published in Ref. [10].
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that this leads to similar effects on the autocorrelation time of observables as using open boundary
conditions. The inclusion of fermions is not straightforward and leads to a complex action for
P-periodic boundaries. The inclusion of a C transformation in the boundary solved this issue. We
have shown how to construct fermionic observables on a non-orientable background and as a proof-
of-principle study measured the pion correlation function on quenched CP-periodic configurations.
We left the implementation and evaluation of dynamic fermions on non-orientable backgrounds for
future work.

While the effect of the non-orientability of the background manifold on the measured au-
tocorrelations is arguably as favourable as the one of open boundary configurations, there is a
fundamental difference between them: While the field space is connected in the open case, the
non-orientable case still comprises two sectors. This can be seen in the instanton picture where
the total topological charge Q is localized in N+ instantons and N− anti-instantons of charge ±1
each. Changes of the charge by 2 units are readily possible by transporting one anti-instanton
once around a non-orientable direction and effectively making it into an instanton. This means that
Q = N+−N− is not conserved and not even well defined, but N++N− is conserved mod 2 and
there are two sectors left, one with an even and one with an odd number of the sum of instantons
and anti-instantons. Lattice artifacts can of course much better lead to an even sampling of these
two remaining sectors at much smaller lattice spacings than of the infinite number of sectors on
the torus. But there is the possibility that some physically interesting observable couples to this
two-sector charge, which would then necessitate the measurement of the sector and a strategy to
sample both with their proper weights.

References

[1] S. Aoki, H. Fukaya, S. Hashimoto and T. Onogi, Phys. Rev. D 76 (2007) 054508
doi:10.1103/PhysRevD.76.054508 [arXiv:0707.0396 [hep-lat]].

[2] R. Kitano and N. Yamada, JHEP 1510 (2015) 136 doi:10.1007/JHEP10(2015)136 [arXiv:1506.00370
[hep-ph]].

[3] R. C. Brower et al. [LSD Collaboration], Phys. Rev. D 90 (2014) no.1, 014503
doi:10.1103/PhysRevD.90.014503 [arXiv:1403.2761 [hep-lat]].

[4] A. Laio, G. Martinelli and F. Sanfilippo, JHEP 1607 (2016) 089 doi:10.1007/JHEP07(2016)089
[arXiv:1508.07270 [hep-lat]].

[5] M. G. Endres, R. C. Brower, W. Detmold, K. Orginos and A. V. Pochinsky, Phys. Rev. D 92 (2015)
no.11, 114516 doi:10.1103/PhysRevD.92.114516 [arXiv:1510.04675 [hep-lat]].

[6] M. Luscher and S. Schaefer, JHEP 1107 (2011) 036 doi:10.1007/JHEP07(2011)036 [arXiv:1105.4749
[hep-lat]].

[7] G. McGlynn and R. D. Mawhinney, Phys. Rev. D 90 (2014) no.7, 074502
doi:10.1103/PhysRevD.90.074502 [arXiv:1406.4551 [hep-lat]].

[8] B. Lucini, A. Patella, A. Ramos and N. Tantalo, JHEP 1602 (2016) 076
doi:10.1007/JHEP02(2016)076 [arXiv:1509.01636 [hep-th]].

[9] M. A. Metlitski, arXiv:1510.05663 [hep-th].

[10] S. Mages, B. C. Toth, S. Borsanyi, Z. Fodor, S. Katz and K. K. Szabo, arXiv:1512.06804 [hep-lat].

13


