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1. Introduction

Many fundamental questions are related to the large-scale behavior of Quantum ChromoDy-
namics (QCD). Remarkably, quarks and gluons appear to be confined in ordinary matter, due to
the mechanism of color confinement which is not yet fully understood. A detailed understanding
of color confinement is one of the central goals of nonperturbative studies of QCD. The lattice
formulation of QCD allows us to investigate the color confinement phenomenon within a non-
perturbative framework. It is known since long from lattice numerical simulations, that tubelike
structures emerge by analyzing the chromoelectric fields between static quarks [1–9]. Such tube-
like structures naturally lead to a linear potential between static color charges and, consequently, to
a direct numerical evidence of color confinement.
To explore on the lattice the field configurations produced by a static quark-antiquark pair, the
following connected correlation function [1, 10] was used:

ρ
conn
W =

〈
tr
(
WLUPL†

)〉
〈tr(W )〉

− 1
N
〈tr(UP)tr(W )〉
〈tr(W )〉

, (1.1)

where UP =Uµν(x) is the plaquette in a given (µ,ν) plane, connected to the Wilson loop W by a
Schwinger line L, and N is the number of colors (see Fig. 1). The quark-antiquark field strength
tensor is given by [1, 10]:

Fµν(x) =

√
1
g2 ρ

conn
W (x) , (1.2)

where g is the gauge coupling. In previous studies [4,6–8,11,12] color flux tubes made up of chro-
moelectric field directed along the line joining a static quark-antiquark pair have been investigated,
in the cases of SU(2) and SU(3) pure gauge theories at zero temperature.
In this paper we study the profile of color flux tubes in pure SU(3) gauge theory and in QCD with
(2+1) flavors and present some new preliminary results with sources at distances up to 1.14 fm.
The dual superconductor model [13,14] of the QCD vacuum is, at least, a very useful phenomeno-
logical frame to interpret the vacuum dynamics and the formation of color flux tubes in the QCD
vacuum. In Refs. [7, 8] it has been suggested that lattice data for chromoelectric flux tubes can
be analyzed by exploiting the results presented in Ref. [15], where, from the assumption of a sim-
ple variational model for the magnitude of the normalized order parameter of an isolated vortex,

W

UP

L

Figure 1: The connected correlator given in Eq. (1.1) between the plaquette UP and the Wilson loop (sub-
traction in ρconn

W not explicitly drawn).
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Figure 2: (left) SU(3) pure gauge: the chromoelectric field El(xt) in physical units versus the transverse
distance xt measured for two different values of the gauge coupling for a distance d = 0.76 fm between
sources. Full lines are the fits using Eq. (1.4). (right) QCD (2+1) flavors: as for left figure.

an analytic expression is derived for magnetic field and supercurrent density, that solves the Am-
pere’s law and the Ginzburg-Landau equations. As a consequence, the transverse distribution of
the chromoelectric flux tube can be described, according to [7, 8, 12], by

El(xt) =
φ

2π

1
λξv

K0(R/λ )

K1(ξv/λ )
, R =

√
x2

t +ξ 2
v (1.3)

where ξv is a variational core-radius parameter. Equation (1.3) can be rewritten as

El(xt) =
φ

2π

µ2

α

K0[(µ
2x2

t +α2)1/2]

K1[α]
, µ =

1
λ
,

1
α

=
λ

ξv
. (1.4)

By fitting Eq. (1.4) to flux-tube data, one can get both the penetration length λ and the ratio of the
penetration length to the variational core-radius parameter, λ/ξv. Moreover, the Ginzburg-Landau
κ parameter can be obtained by

κ =
λ

ξ
=

√
2

α

[
1−K2

0 (α)/K2
1 (α)

]1/2
. (1.5)

Finally, the coherence length ξ is determined by combining Eqs. (1.4) and (1.5).

2. Lattice setup and numerical results

Both for the cases of pure gauge SU(3) and QCD with (2+1) flavors we performed simulations
on a 324 lattice. We have made use of the publicly available MILC code [16], which has been
suitably modified by us in order to introduce the relevant observables.
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Table 1: SU(3) pure gauge. The results of the fit to the chromoelectric field Eq. (1.4) at several distances d
between the sources, together with the square root width of the flux tube Eq. (2.3) and the square root of the
energy in the flux tube per unit length normalized to the flux φ , Eq. (2.4).

β d [fm] φ λ [fm] κ = λ/ξ ξ [fm]
√

w2 [fm]
√

ε/φ [GeV]
6.050 0.76 5.143(39) 0.164(5) 0.348(208) 0.472(283) 0.458(17) 0.133(5)
6.195 0.76 5.485(56) 0.173(7) 0.369(229) 0.469(293) 0.476(24) 0.128(7)
6.050 0.95 5.932(114) 0.169(16) 0.229(103) 0.738(339) 0.517(59) 0.116(14)
6.050 1.14 6.254(617) 0.166(95) 0.174(65) 0.953(651) 0.542(386) 0.109(82)

2.1 SU(3) pure gauge

We measure on the lattice the chromoelectric field generated by a quark-antiquark pair at
distances up to 1.14 fm. The scale is fixed using the parameterization [17]:(

a
√

σ
)
(g) = fSU(3)(g

2)
{

1+0.2731 â2(g) (2.1)

− 0.01545 â4(g)+0.01975 â6(g) }/0.01364 ,

â(g) =
fSU(3)(g2)

fSU(3)(g2(β = 6))
, β =

6
g2 , 5.6≤ β ≤ 6.5 ,

with

fSU(3)(g
2) =

(
b0g2)−b1/2b2

0 exp
(
− 1

2b0g2

)
, b0 =

11
(4π)2 , b1 =

102
(4π)4 . (2.2)

In the following, we assumed for the string tension the standard value of
√

σ = 420 MeV.
We measured the connected correlator given in Eq. (1.1) at the middle of the line connecting the
static color sources, for various values of the distance between the sources and for integer transverse
distances. In order to reduce the ultraviolet noise, we applied to the operator in Eq. (1.1) one step
of HYP smearing [18] to temporal links, with smearing parameters (α1,α2,α3) = (1.0,0.5,0.5),
and NAPE steps of APE smearing [19] to spatial links, with smearing parameter αAPE = 0.40. Here
αAPE is the ratio between the weight of one staple and the weight of the original link.

We fitted our data for the transverse shape of the longitudinal chromoelectric field to Eq. (1.4).
Remarkably, we found that Eq. (1.4) is able to reproduce the transverse profile of the longitudinal
chromoelectric field.

We checked that our lattice results are consistent with continuum scaling. To do this we
measured the longitudinal chromoelectric field generated by sources at distance 8a and 10a (a
is the lattice spacing) for two values of the gauge couplings β = 6.050 and β = 6.195. According
to the scale given in Eq. (2.1), this amounts to a distance of 0.76fm in physical units. The result
in Fig. 2 seems to display an almost perfect scaling. Having selected the gauge coupling region
where continuum scaling holds, we measured the longitudinal chromoelectric field at distances 10a
and 12a at β = 6.050, which corresponds respectively to distances 0.95 fm and 1.14 fm in physical
units. In Fig. 3 we display the results. Now, using Eq. (1.4) and the values of the parameters
obtained by fitting Eq. (1.4) to the numerical value for the longitudinal chromoelectric field, we are
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Figure 3: SU(3) pure gauge: the chromoelectric field El(xt) in physical units versus the transverse distance
xt measured for distance d = 0.95 fm (left) and distance d = 1.14 fm (right) between sources. Full lines are
the fits using Eq. (1.4).

able to estimate the mean square root width of the flux tube:

√
w2 =

√∫
d2xt x2

t El(xt)∫
d2xt El(xt)

=

√
2α

µ2
K2(α)

K1(α)
(2.3)

and the square root of the energy in the flux tube per unit length, normalized to the flux φ :

√
ε

φ
=

1
φ

√∫
d2xt

El(xt)2

2
=

√√√√µ2

8π

(
1−
(

K0(α)

K1(α)

)2
)

. (2.4)

The results are given in Table 1. We can argue that the penetration length λ is almost stable within
errors at varying the distance between the sources, while there is a hint of slow increasing for ξ

and
√

w2.

2.2 QCD (2+1) flavors

In this section we present results obtained for QCD with (2+1) flavors. The highly improved
staggered quark action with tree level improved Symanzik gauge action (HISQ/tree) has been
adopted (see Ref. [20]). We work on the line of constant physics determined by fixing the strange
quark mass to its physical value ms at each value of the gauge coupling. The light-quark mass has
been fixed at ml = ms/20. This corresponds to a pion mass Mπ = 160 MeV. The lattice spacing has
been determined using results of Ref. [20]. As in the case of pure gauge SU(3) theory in order to
measure the correlator Eq. (1.1) we perform one HYP smearing on temporal links and several APE
smearings on spatial links. To check the continuum scaling we considered two different values of
the gauge couplings β = 6.743 and β = 6.885 and measured the chromoelectric field produced by
sources at distances 7a and 8a respectively. This amounts to have a distance of 0.76 fm between
sources. The result displayed in Fig. 2 indicates an almost perfect scaling (see also Table 2 for
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Figure 4: ((2+1)-flavor QCD: the chromoelectric field El(xt) in physical units versus the transverse distance
xt measured for distance d = 0.95 fm (left) and distance d = 1.14 fm (right) between sources. Full lines are
the fits using Eq. (1.4).

the parameters obtained in fitting the data to Eq. (1.4). Then we measured the field produced for
two other distances between the sources, namely, at gauge coupling β = 6.885, we considered the
distances 10a and 12a, corresponding to 0.95 fm and 1.14 fm. The results are displayed in Fig. 4.
Differently from the pure SU(3) gauge (see Fig. 3) the measurements for the chromoelectric field
at distance d = 1.14fm versus the the transverse distance seem to fluctuate around zero, although
with large errors. This circumstance could suggest that, in presence of dynamical fermions and for
a sufficiently large distance between sources, the flux tube structure disappears.

Table 2: (2+1)-flavor QCD. The results of the fit to the chromoelectric field Eq. (1.4) at several distances d
between the sources, together with the square root width of the flux tube Eq. (2.3) and the square root of the
energy in the flux tube per unit length normalized to the flux φ , Eq. (2.4).

β ∆ [fm] φ λ [fm] κ = λ/ξ ξ [fm]
√

w2 [fm]
√

ε/φ [GeV]
6.743 0.76 4.366(48) 0.139(8) 0.264(131) 0.526(263) 0.411(29) 0.146(11)
6.885 0.76 4.251(67) 0.147(10) 0.342(203) 0.429(256) 0.411(33) 0.148(13)

Acknowledgements

This work was based in part on the MILC Collaboration’s public lattice gauge theory code
(http://physics.utah.edu/~detar/milc.html) and has been partially supported by
INFN SUMA project. Simulations have been performed using computing facilities at CINECA
(INF16_npqcd project under CINECA-INFN agreement).

5



P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
3
4
4

Flux tubes in QCD with (2+1) HISQ fermions Leonardo Cosmai

References

[1] A. Di Giacomo, M. Maggiore, and S. Olejnik, Confinement and Chromoelectric Flux Tubes in Lattice
QCD, Nucl. Phys. B347 (1990) 441–460.

[2] P. Cea and L. Cosmai, Lattice investigation of dual superconductor mechanism of confinement, Nucl.
Phys. Proc. Suppl. 30 (1993) 572–575.

[3] Y. Matsubara, S. Ejiri, and T. Suzuki, The (dual) Meissner effect in SU(2) and SU(3) QCD, Nucl.
Phys. Proc. Suppl. 34 (1994) 176–178, [hep-lat/9311061].

[4] P. Cea and L. Cosmai, Dual superconductivity in the SU(2) pure gauge vacuum: A Lattice study,
Phys. Rev. D52 (1995) 5152–5164, [hep-lat/9504008].

[5] G. S. Bali, K. Schilling, and C. Schlichter, Observing long color flux tubes in SU(2) lattice gauge
theory, Phys. Rev. D51 (1995) 5165–5198, [hep-lat/9409005].

[6] M. S. Cardaci, P. Cea, L. Cosmai, R. Falcone, and A. Papa, Chromoelectric flux tubes in QCD,
Phys.Rev. D83 (2011) 014502, [arXiv:1011.5803].

[7] P. Cea, L. Cosmai, and A. Papa, Chromoelectric flux tubes and coherence length in QCD, Phys.Rev.
D86 (2012) 054501, [arXiv:1208.1362].

[8] P. Cea, L. Cosmai, F. Cuteri, and A. Papa, Flux tubes in the SU(3) vacuum: London penetration depth
and coherence length, Phys. Rev. D89 (2014), no. 9 094505, [arXiv:1404.1172].

[9] N. Cardoso, M. Cardoso, and P. Bicudo, Inside the SU(3) quark-antiquark QCD flux tube: screening
versus quantum widening, Phys. Rev. D88 (2013) 054504, [arXiv:1302.3633].

[10] D. S. Kuzmenko and Y. A. Simonov, Field distributions in heavy mesons and baryons, Phys. Lett.
B494 (2000) 81–88, [hep-ph/0006192].

[11] P. Cea and L. Cosmai, Dual Meissner effect and string tension in SU(2) lattice gauge theory, Phys.
Lett. B349 (1995) 343–347, [hep-lat/9404017].

[12] P. Cea, L. Cosmai, F. Cuteri, and A. Papa, Flux tubes at finite temperature, JHEP 06 (2016) 033,
[arXiv:1511.01783].

[13] G. ’t Hooft, The confinement phenomenon in quantum field theory, in High Energy Physics, EPS
International Conference, Palermo, 1975 (A. Zichichi, ed.), 1975.

[14] S. Mandelstam, Vortices and quark confinement in non Abelian gauge theories, Phys. Rept. 23 (1976)
245.

[15] J. R. Clem, Simple model for the vortex core in a type ii superconductor, Journal of Low Temperature
Physics 18 (1975) 427–434. 10.1007/BF00116134.

[16] http://physics.utah.edu/~detar/milc.html.

[17] R. G. Edwards, U. M. Heller, and T. R. Klassen, Accurate scale determinations for the Wilson gauge
action, Nucl. Phys. B517 (1998) 377–392, [hep-lat/9711003].

[18] A. Hasenfratz and F. Knechtli, Flavor symmetry and the static potential with hypercubic blocking,
Phys. Rev. D64 (2001) 034504, [hep-lat/0103029].

[19] M. Falcioni, M. Paciello, G. Parisi, and B. Taglienti, Again on su(3) glueball mass, Nuclear Physics B
251 (1985), no. 0 624 – 632.

[20] A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D85 (2012)
054503, [arXiv:1111.1710].

6

http://arxiv.org/abs/hep-lat/9311061
http://arxiv.org/abs/hep-lat/9504008
http://arxiv.org/abs/hep-lat/9409005
http://arxiv.org/abs/1011.5803
http://arxiv.org/abs/1208.1362
http://arxiv.org/abs/1404.1172
http://arxiv.org/abs/1302.3633
http://arxiv.org/abs/hep-ph/0006192
http://arxiv.org/abs/hep-lat/9404017
http://arxiv.org/abs/1511.01783
http://arxiv.org/abs/hep-lat/9711003
http://arxiv.org/abs/hep-lat/0103029
http://arxiv.org/abs/1111.1710

