
P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
3
4
5

Quark confinement to be caused by Abelian or
non-Abelian dual superconductivity in the SU(3)
Yang-Mills theory

Akihiro Shibata∗

Computing Research Center, High Energy Accelerator Research Organization (KEK)
E-mail: Akihiro.Shibata@kek.jp

Kei-Ichi Kondo
Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
E-mail: kondok@faculty.chiba-u.jp

Seikou Kato
Oyama National College of Technology, Oyama, Tochigi 323-0806, Japan
E-mail:skato@oyama-ct.ac.jp

Toru Shinohara
Department of Physics, Graduate School of Science, Chiba University, Chiba 263-8522, Japan
E-mail:sinohara@graduate.chiba-u.jp

The dual superconductivity is a promising mechanism for quark confinement. We have presented a new
formulation of the Yang-Mills theory on the lattice that enables us to change the original non-Abelian
gauge field into the new field variables such that one of them called the restricted field gives the dominant
contribution to quark confinement in the gauge independent way. We have pointed out that the SU(3)
Yang-Mills theory has another reformulation using new field variables (minimal option), in addition to
the way adopted by Cho, Faddeev and Niemi (maximal option). In the past lattice conferences, we have
shown the numerical evidences that support the non-Abelian dual superconductivity using the minimal
option for the SU(3) Yang-Mills theory. This result should be compared with Abelian dual superconduc-
tivity obtained in the maximal option which is a gauge invariant extension of the conventional Abelian
projection method in the maximal Abelian gauge.
In this talk, we focus on discriminating between two reformulations, i.e., maximal and minimal options
of the SU(3) Yang-Mills theory from the viewpoint of dual superconductivity for quark confinement.
We investigate the confinement/deconfinement phase transitions at finite temperature in both options,
which are compared with the original Yang-Mills theory. For this purpose, we measure the distribution
of Polyakov-loops and the Polyakov-loop average, the correlation function of the Polyakov loops and
the distribution of the chromoelectric flux connecting a quark and antiquark in both confinement and
deconfinement phases.
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1. Introduction

The dual superconductivity is a promising mechanism for quark confinement [1]. In order to establish
this picture, we have presented a new formulation of the Yang-Mills theory on the lattice that enables us
to decompose the original Yang-Mills (YM) gauge link valiable Ux,µ into the gauge link variable Vx,µ cor-
responding to its maximal stability subgroup of the gauge group and the remainder Xx,µ , Ux,µ = Xx,µVx,µ ,
where the restricted field Vx,µ could be the dominant mode for quark confinement. (For a review see [2]).
For the SU(3) YM theory, we have two options of the decomposition: the minimal and maximal options.
In the minimal option, especially, the maximal stability group is non-Abelian U(2)and the restricted field
contains the non-Abelian magnetic monopole. In the preceding works, we have shown numerical evi-
dences of the non-Abelian dual superconductivity using the minimal option for the SU(3) YM theory on
a lattice: the restricted field and the extracted non-Abelian magnetic monopole dominantly reproduces
the string tension in the linear potential of the SU(3) YM theory [5], and the SU(3) YM vacuum is the
type I dual superconductor detected by the chromoelectric flux tube and the magnetic monopole current
induced around it, which is a novel feature obtained by our simulations [6]. We have further investi-
gated the confinement/deconfinement phase transition in view of this non-Abelian dual superconductivity
picture[7][8][9][10]. These results should be compared with the maximal option which is adopted first by
Cho, Faddeev, and Niemi [12]. The maximal stablity group is Abelian U(1)×U(1) and the restricted field
involves only the Abelian magnetic monopole [13][14]. This is nothing but the gauge invariant extension
of the Abelian projection in the maximal Abelian gauge[15][16].

In this talk, we focus on discriminating between two reformulations, i.e., maximal and minimal op-
tions of the SU(3) YM theory from the viewpoint of dual superconductivity for quark confinement. For
this purpose, we measure string tension for the restricted non-Abelian field of both minimal and maximal
option in comparison with the string tension for the original YM field. We also investigate the dual Meiss-
ner effect by measuring the distribution of the chromoelectric flux connecting a quark and an antiquark
and the induced magnetic-monopole current around the flux tube.

2. Gauge link decompositions

Let Ux,µ = Xx,µVx,µ be a decomposition of the YM link variable Ux,µ , where the YM field and the
decomposed new variables are transformed by full SU(3) gauge transformation Ωx such that Vx,µ is trans-
formed as a gauge link variable and Xx,µ as a site variable [11]:

Ux,µ −→U ′
x,µ = ΩxUx,µΩ†

x+µ , (2.1a)

Vx,µ −→V ′
x,µ = ΩxVx,µΩ†

x+µ , Xx,µ −→ X ′
x,ν = ΩxXx,µΩ†

x . (2.1b)

For the SU(3) YM theory, we have two options discriminated by its stability group, so called the minimal
and maximal options.

2.1 Minimal option

The minimal option is obtained for the stability subgauge group H̃ =U(2) = SU(2)×U(1)⊂ SU(3).
By introducing the color field hx = ξ (λ 8/2)ξ † ∈ SU(3)/U(2) with λ 8 being the last diagonal Gell-Mann
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matrix and ξ an SU(3) group element, the decomposition is given by the defining equation:

Dε
µ [V ]hx :=

1
ε
[
Vx,µhx+µ −hxVx,µ

]
= 0, (2.2a)

gx := ei2πq/3 exp(−ia0
xhx − i∑3

j=1 a( j)
x u( j)

x ). (2.2b)

Here, the variable gx is an undetermined parameter from Eq.(2.2a), u( j)
x ’s are su(2)-Lie algebra valued,

and q has an integer value. These defining equations can be solved exactly, and the solution is given by

Xx,µ = L̂†
x,µ det(L̂x,µ)

1/3g−1
x , Vx,µ = X†

x,µUx,µ , (2.3a)

L̂x,µ :=
(
Lx,µL†

x,µ
)−1/2

Lx,µ , (2.3b)

Lx,µ :=
5
3

1+
2√
3
(hx +Ux,µhx+µU†

x,µ)+8hxUx,µhx+µU†
x,µ . (2.3c)

Note that the above defining equations correspond to the continuum version: Dµ [V ]h(x)= 0 and tr(h(x)Xµ(x))
= 0, respectively. In the naive continuum limit, we have reproduced the decomposition Aµ(x) = Vµ(x)+
Xµ(x) in the continuum theory [3].

The decomposition is uniquely obtained as the solution (2.3) of Eqs.(2.2), if color fields{hx} are
obtained. To determine the configuration of color fields, we use the reduction condition to formulate the
new theory written by new variables (Xx,µ ,Vx,µ ) which is equipollent to the original YM theory. Here, we
use the reduction functional:

Fred[hx] = ∑x,µ tr
{
(Dε

µ [Ux,µ ]hx)
†(Dε

µ [Ux,µ ]hx)
}
, (2.4)

and then color fields {hx} are obtained by minimizing the functional (2.4).

2.2 Maximal option

The maximal option is obtained for the stability subgroup of the maximal tarus group H̃ = U(1)×
U(1) ⊂ SU(3), and the resulting decomposition is the gauge-invariant extension of the Abelian projec-
tion in the maximal Abelian （ＭＡ） gauge. By introducing the color field n(3) = ξ (λ 3/2)ξ †, n(8) =

ξ (λ 8/2)ξ † ∈ SU(3)/U(2) with λ 3,λ 8 being the two diagonal Gell-Mann matrices and ξ an SU(3) group
element, the decomposition is given by the defining equation:

Dε
µ [V ]n( j)

x :=
1
ε

[
Vx,µn( j)

x+µ −n( j)
x Vx,µ

]
= 0 j = 3,8, (2.5a)

gx := ei2πq/3 exp(−ia3
xn(3)

x − ia(8)x n(8)
x ). (2.5b)

The variable gx is an undetermined parameter from Eq.(2.5a), and q has an integer value. These defining
equations can be solved exactly, and the solution is given by

Xx,µ = K̂†
x,µ det(K̂x,µ)

1/3g−1
x , Vx,µ = X†

x,µUx,µ , (2.6a)

K̂x,µ :=
(
Kx,µK†

x,µ
)−1/2

Kx,µ , (2.6b)

Kx,µ := 1+6(n(3)
x Ux,µn(3)

x+µU†
x,µ)+6(n(8)

x Ux,µn(8)
x+µU†

x,µ) (2.6c)

Note that the above defining equations correspond to the continuum version: Dµ [V ]n( j)(x) = 0 and
tr(n( j)(x)Xµ(x)) = 0, respectively. In the naive continuum limit, we have reproduced the decomposi-
tion Aµ(x) = Vµ(x)+Xµ(x) in the continuum theory.( See [3][12].)
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Figure 1: Distribution of the space-averaged Polyakov loops: The space-averaged Polyakov loop eq(3.2) for each
configuration are plotted in the complex plane. (a) original (YM) field. (b) restricted field in the minimal option, (c)
restricted field in the maximal option.

To determine the configuration of color fields, we use the reduction condition to formulate the new
theory written by new variables (Xx,µ ,Vx,µ ) which is equipollent to the original YM theory. Here, we use
the reduction functional:

Fred[n
(3)
x ,n(8)

x ] = ∑x,µ ∑ j=3,8 tr
{
(Dε

µ [Ux,µ ]n
( j)
x )†(Dε

µ [Ux,µ ]n
( j)
x )
}
, (2.7)

and then color fields
{

n(3)
x ,n(8)

x

}
are obtained by minimizing the functional (2.7). It should be noticed that

the maximal option gives the gauge invariant extension of the Abelian projection in the maximal Abelian
gauge.

3. Lattice Data

We generate the YM gauge field configurations (link variables) {Ux,µ} using the standard Wilson
action on the lattice with the size of L3 ×NT = 243 ×6. We prepare 500 data sets at β := 2Nc/g2 (Nc =

3) = 5.8,5.9,6.0,6.1,6.2,6.3 every 500 sweeps after 10000 thermalization. The temperature is controlled
by changing the parameter β . We obtain two types of decomposed gauge link variables Ux,µ = Xx,µVx,µ

for each gauge link by using the formula Eqs.(2.3) and (2.6) given in the previous section, after the color-
field configuration {hx} and

{
n(3)

x ,n(8)
x

}
are obtained by solving the reduction condition as minimizing

the functional (2.4) and (2.7), respectively. In the measurement of the Wilson loop average defined below,
we apply the APE smearing technique to reduce noises.

First, we investigate the distribution of a single Polyakov loop P∗(x) in both options as well as the
original Yang-Mills theory:

PY M(x) := tr

(
P

NT

∏
t=1

U(x,t),4

)
, Pmin(x) := tr

(
P

NT

∏
t=1

V (min)
(x,t),4

)
,Pmax(x) := ∑

x
tr

(
P

NT

∏
t=1

V (max)
(x,t),4

)
, (3.1)

Figure 1 represents the distribution of the space-averaged Polyakov loop P∗(x) defined by

PY M =
1
L3 ∑

x
PY M(x), Pmin =

1
L3 ∑

x
Pmin(x), Pmax =

1
L3 ∑

x
Pmax(x), (3.2)

for each configuration in the complex plane. The value of the space-averaged Polyakov loop are different
among the options, but all the distributions equally refrect the expected center symmetry Z(3) of SU(3).
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Figure 2: (Left) The combination plot of the Polyakov-loop averages for the original (YM) field, minimal option
maximal option from bottom to top. (Right) The combination plot of the suseceptability of the Polyakov-loop for
the original field, minimal option and maximal option.
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Figure 3: 　 The two-point correlation functions of the Polyakov loops calculated from the Yang-Mills field and
V-fields in the minimal and maximal options are ploted in the same panel for various values of β

The left panel of Figure 2 shows the Polyakov-loop average, ⟨PY M⟩, ⟨Pmin⟩, ⟨Pmax⟩. The Polyakov-loop
average is an order parameter of the center symmetry breaking and restoration, which is the conventional
order parameter of the confinement/deconfinement phase transition. The right panel of Fig.2 shows the
susceptibility. Fig.2 shows that three Polyakov-loop average give the same critical point β = 5.9. There-
fore, both the minimal and maximal options reproduce the critical point in the original Yang-Mills field.

Next, we investigate the two-point correlation function of the Polyakov loops, which is related to the
mixed static-potential of the singlet and adjoint composite states in the following way [18]:

VU(r = |x−y|) = log(⟨PU(x)PU(y)⟩), ⟨PU(x)PU(y)⟩ ≃
1

Nc
e−F(S)/T +

N2
c −1
Nc

e−F(A)/T . (3.3)

Figure 3 shows the combination plot eq.(3.3) for various temperature (β ). In the both options we find
that the restricted field (V -field) is dominant for the Polyakov loop correlation function and reproduces the
static potential of the original YM theory in the long distance r = |x−y|.

Finally, we study the dual Meissner effect. For this purpose, we measure the chromo flux at finite
temperature created by a quark-antiquark pair which is represented by the maximally extended Wilson
loop W of the R×T rectangle, i.e., the field strength of the chromo flux at the position P is measured by

4
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Figure 4: Chromo flux created by a pair of quark and anti-quark. The flux is measured at the point of distance y
from the 1/3 dividing point of quark and antiquark lying on the z-axis. Upper and lower panels represent chromo
flux in confining phase (β = 5.8) and deconfining phase (β = 6.2), respectively. Each panel in the left midle and
right represents the measurement of the original (YM) field, the minimal and the maximal options, respectively.

using a plaquette variable Up at P as the probe operator for the field strength [17]:

ρUP
:=

⟨
tr
(
WLUpL†

)⟩
⟨tr(W )⟩

− 1
3
⟨tr(Up) tr(W )⟩

⟨tr(W )⟩
, (3.4)

where L is the Schwinger line connecting the source W and the probe Up needed to obtain the gauge-
invariant result (See [8]). To measure the chromo flux for the restricted fields of the minimal and maximal
options, we use the operator that the Schwinger line L and the probe Up are made of the restricted fields.
Figure 3 shows the preliminary measurements of the chromo flux the both options and the original field.
We find that the chromo-flux tube appears in the confining phase (β = 5.8), while in the deconfining
phase (β = 6.2) the flux tube disappears, that is to say, the confinement/deconfinement phase transition
is understood as the dual Meissner effect. This is the case for both options and the original YM field,
although the precise profiles of the chromo flux are different option by option.

4. Summary

By using a new formulation of YM theory, we have investigated possible two types of the dual super-
conductivity at finite temperature in the SU(3) YM theory, i.e., the Non-Abelian dual superconductivity as
the minimal option and the maximal option to be compared with the conventional Abelian dual supercon-
ductivity. In the measurement for both maximal and minimal options as well as for the original YM field
at finite temperature, we found the restricted V-field dominance for both options. The restricted fields in
the both options reproduce the center symmetry breaking and restoration of the original Yang-Mills the-
ory, and give the same critical temperature of the confining-deconfining phase transition. Then, we have
investigated the dual Meissner effect and found that the chromoelectric flux tube appears in each option
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in the confining phase, but it disappears in the deconfining phase. Thus both options can be adopted as
the low-energy effective description of the original Yang-Mills theory at least within the investigations
presented in this talk.
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