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1. Introduction

Lattice QCD is a set of numerical techniques which uses a finite space-time lattice to simu-
late the interactions between quarks and gluons. The evaluation of quark loop effects on a given
lattice is essential but extremely computer time intensive and approximation techniques must be
introduced[1]. In this paper, we describe some new noise subtraction methods useful in evaluating
quark operators. Perturbative subtraction[2] is a standard method which we will be comparing to
and attempting to improve upon. This paper will be focusing on eigenspectrum subtraction (defla-
tion), polynomial subtraction, and combination methods.

2. Methods

Many operators in lattice QCD simulations are flooded with noise. Several strategies could be
applied to reduce the variance of these operators, which originates in the off-diagonal components
of the associated quark matrix. One basic strategy is to mimic the off-diagonal elements of the
inverse of the quark matrix with another traceless matrix, thereby maintaining the trace but with
reduced statistical uncertainty. We have applied several new techniques to non-subtracted (NS)
lattice data. These are termed eigenvalue subtraction (ES)[3], Hermitian forced eigenvalue sub-
traction (HFES)[4] and polynomial subtraction (POLY)[5]. In [4] we also introduced techniques
which combine deflation with other subtraction methods. Here we will compare the various meth-
ods and show how effective the combination methods are. We work with the standard Wilson
matrix in the quenched approximation. The size of the lattice we used is 243×32, the number of
noises is 200, the kappa value is 0.155, and we use Z4 noise. Linear equations are solved using
GMRES-DR (generalized minimum residual algorithm-deflated and restarted) for the first noise
and GMRES-Proj (similar algorithm projected over eigenvectors) for remaining noises[6] .

In order to calculate the trace, the quark matrix M is projected over a finite number of noises
η(n), Mx(n) = η(n), and solution vectors x(n) are extracted. All of our methods attempt to design
a traceless matrix M̃−1 in order to obtain off-diagonal elements as close to M−1 as possible. We
then use solution vectors formed from such a matrix. Unfortunately, this matrix is not completely
traceless, so we will have to re-add the appropriate trace. For the trace of the inverse quark matrix
one has

Tr
(
M−1)= 1

N

N

∑
n

(
η
(n)†
(

x(n)− x̃(n)
))

+Tr
(
M̃−1) , (2.1)

for N noises, where x(n) is the solution vector generated when implementing the GMRES algo-
rithms and x̃(n) is given by

x̃(n) ≡ M̃−1
η
(n). (2.2)

For any operator Θ, the appropriate trace becomes

Tr
(
ΘM−1)= 1

N

N

∑
n

(
η
(n)†

Θ

(
x(n)− x̃(n)

))
+Tr

(
ΘM̃−1) . (2.3)

Note that adding Tr
(
ΘM̃−1

)
has no influence on the noise error bar, which is what is studied here.
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2.1 Eigenvalue Subtraction (ES)

The spectrum of low eigenvalues of matrices can limit the performance of iterative solvers.
We have emphasized the role of deflation in accelerating the convergence of algorithms in Ref.[7].
Here we investigate deflation effects in statistical error reduction. Consider the vectors e(q)R and
e(q)†L , which are defined as normalized right and left eigenvectors of the matrix M, as in

Me(q)R = λ
(q)e(q)R , (2.4)

and
e(q)†L M = λ

(q)e(q)†L , (2.5)

where λ (q) is the eigenvalue associated with both eigenvectors. With a full set N of eigenvectors
and eigenvalues the matrix M can be fully formed as

M =
N

∑
q=1

e(q)R λ
(q)e(q)†L , (2.6)

or
M =VRΛV †

L , (2.7)

where VR contains the right eigenvectors and V †
L contains the left eigenvectors. Λ is a purely diago-

nal matrix made up of the eigenvalues of M in the order they appear in both VR and VL. Deflating out
eigenvalues with the linear equation solver GMRES-DR can mimic the low eigenvalue structure of
the inverse of matrix M as

M̃−1
eig ≡ ṼRΛ̃

−1Ṽ †
L , (2.8)

where ṼR and Ṽ †
L are the computed right and left eigenvectors and Λ̃−1 is the inverse of eigenvalues.

In the results we will see that if we näively subtract eigenvalues from a non-Hermitian matrix,
we often end up expanding the size of error bars. This happens because many of the right handed
eigenvectors of a non-Hermitian matrix can point in the same direction, a condition referred to as
“highly non-normal".

The trace takes the following form in this method,

Tr
(
ΘM−1)= 1

N

N

∑
n

(
η
(n)†

Θ

(
x(n)− x̃(n)eig

))
+Tr

(
ΘM̃−1

eig

)
, (2.9)

where x̃(n)eig = M̃−1
eig η(n). This last operation does not add matrix vector products. The generation of

eigenmodes only requires the super convergence solution of a single right hand side with GMRES-
DR. As pointed out previously[3], there is a relation between the even-odd eigenvectors for the
reduced system and the full eigenvectors. Other right hand sides are accelerated with GMRES-Proj
using the eigenvalues generated.

2.2 Hermitian Forced Eigenvalue Subtraction (HFES)

To avoid the non-normal problem we force our matrix to be formulated in a Hermitian manner.
The easiest way for us to do this with the Wilson matrix is to multiply by the Dirac γ5 matrix. It
is important for the algorithm to do the multiplication on the right, Mγ5, to avoid using cyclic
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properties which fail in finite noise space. We can then form the low eigenvalue structure of Mγ5

from these eigenvalues. We define

M′ ≡Mγ5. (2.10)

We can now form normalized eigenvectors e′(n)R , eigenvalues λ ′(n) and solution vectors x̃′(n)eig for this
new Hermitian matrix and perform a calculation similar to the ES method, accounting properly for
the extra γ5 factors. The trace of any operator Θ, for the HFES method takes the following form,

Tr
(
ΘM−1)= 1

N

N

∑
n

(
η
(n)†

Θ

(
x(n)− x̃′(n)eig

))
+Tr

(
Θγ5M̃′−1

eig

)
, (2.11)

where

x̃′(n)eig ≡ γ5M̃′−1
eigη

(n) = γ5

Q

∑
q

1

λ ′(q)
e′(q)R

(
e′(q)†R η

(n)
)

(2.12)

and

M̃′−1
eig ≡ Ṽ ′RΛ̃

−1Ṽ ′†R . (2.13)

Ṽ ′R is a matrix whose columns are the Q smallest right eigenvectors of M′. Λ̃−1 is the diagonal
matrix of size Q that contains the inverse of eigenvalues 1/λ ′(q) as the diagonal elements. The price
paid here, similar to the ES method, is a single extra super convergence on one right hand side for
the non-reduced Hermitian system M′ with GMRES-DR to extract eigenvectors and eigenvalues.

2.3 Polynomial Subtraction (POLY)

Our goal is to find more efficient methods than perturbative subtraction (PS), where to 6th
order:

M̃−1
pert ≡ 1+κP+(κP)2 +(κP)3 +(κP)4 +(κP)5 +(κP)6. (2.14)

P is the quark hopping matrix and κ is the usual expansion parameter. The polynomial method is
similar to that of perturbative subtraction. The only difference is that the coefficients are allowed
to be different from one,

M̃−1
poly ≡ a1 +a2κP+a3(κP)2 +a4(κP)3 +a5(κP)4 +a6(κP)5 +a7(κP)6, (2.15)

where the ai’s are the coefficients obtained from min-res projection[5]. The trace in this method
takes the form,

Tr
(
ΘM−1)= 1

N

N

∑
n

(
η
(n)† ·Θ

(
x(n)− x̃(n)poly

))
+Tr

(
ΘM̃−1

poly

)
, (2.16)

where

x̃(n)poly ≡ M̃−1
polyη

(n). (2.17)
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2.4 Combination Methods (HFPOLY and HFPS)

We have developed two methods which combine the error reduction techniques of HFES with
POLY and PS, called HFPOLY and HFPS. Näively, for POLY we could think of this method
as a subtracted combination: M̃−1

poly + γ5M̃′−1
eig . However, this presents a possible conflict since

M̃−1
poly will overlap on the deflated Hermitian eigenvector space. In order to prevent this, we also

remove low eigenmode information from M̃−1
poly. Since M̃poly is not Hermitian, the procedure is

to define M̃′poly = M̃polyγ5 and remove its overlapping Hermitian eigenvalue information using the
eigenvectors from M′. Following the idea in Ref.[3], we define

e′(q)†R M̃′−1
polye′(q)R ≡

1
ξ ′(q)

, (2.18)

where e′(q)R is the eigenmode of M′ generated within HFES method and 1/ξ ′(q) are the approximate
eigenvalues of M̃′−1

poly. The trace takes the following form,

Tr
(
ΘM−1)= 1

N
∑

N
n

(
η(n)†

[
Θx(n)−Θx̃′(n)eig−

(
Θx̃(n)poly−Θx̃′(n)eigpoly

)])
+ Tr

(
Θγ5M̃′−1

eig

)
+Tr

(
ΘM̃−1

poly−Θγ5M̃′−1
eigpoly

)
, (2.19)

where

x̃′(n)eigpoly ≡ γ5M̃′−1
eigpolyη

(n) = γ5

Q

∑
q

1
ξ ′(q)

e′(q)R

(
e′(q)†R η

(n)
)
. (2.20)

x̃′(n)eig and x̃(n)poly are defined in previous sections and

M̃
′−1

eigpoly ≡ Ṽ ′RΞ
−1Ṽ ′†R , (2.21)

where Ṽ ′R is defined above also and Ξ−1 is the diagonal matrix of size Q that contains approximate
inverse eigenvalues, 1/ξ ′(q).

In the case of HFPS, M̃−1
poly is replaced by M̃−1

pert and all the calculations are repeated.

3. Results

Figure 1 shows the calculated error bars for the nonlocal current operator in the one direction
(other currents are similar) as a function of deflated eigenvectors. Similarly, Figure 2 shows error
bars for the local current operator in the one direction. Figure 3 represents the error bar for the
scalar operator. We deflated approximately 140 eigenvectors.

The ES method does not decrease the error bars as the number of deflated eigenvectors is
increased. This arises from the non-normal nature of the non-Hermitian eigenvectors1. The HFES
method reduces the error bars in all cases. However it does not outperform PS for the number of
eigenvectors removed. The POLY method is better than PS for nonlocal and scalar operators but
the difference is not that significant for local operators. The HFPOLY combo is the most efficient
method. We define the relative efficiency, RE, of the two methods as

RE ≡
(

1
δy2 −1

)
×100, (3.1)

1Note that the numerical ES results in Ref.[3] were in error; see Ref.[4]
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where δy is the relative error bar. The relative error bars for HFPOLY combo as compared to
PS are approximately 0.77,0.75 and 0.74 for scalar, local and nonlocal operators, respectively.
That means the HFPOLY method is more efficient than the PS method by 68%, 77% and 81%,
respectively. We expect efficiency to improve further as we move on towards lower quark masses.
Note that similar results for deflation applied to hierarchical probing have been obtained in Ref.[8].
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Figure 1: Error bars for a nonlocal spatial vector as a function of deflated eigenvalues.
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Figure 2: Error bars for a local spatial vector as a function of deflated eigenvalues.
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Figure 3: Error bars for the scalar operator as a function of deflated eigenvalues.

4. Conclusions

Our polynomial and perturbative deflation combination methods produce very encouraging
results for κ = 0.155. Although our quark mass is not small in this investigation, we are hopeful
that our methods will be effective at smaller quark mass.
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