
P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
3
6
7

Ground state charmed meson and baryon spectra
for N f = 2+1+1 QCD

T. Rae∗

University of Wuppertal, 42119 Wuppertal, Germany
E-mail: thrae(AT)uni-wuppertal.de

S. Collins
University of Regensburg, 93040 Regensburg, Germany
E-mail: sara.collins(AT)physik.uni-regensburg.de

S. Dürr
University of Wuppertal, 42119 Wuppertal, Germany,
IAS/JSC Forschungszentrum Jülich, 52425 Jülich, Germany
E-mail: durr(AT)itp.unibe.ch

S. Hofmann
University of Regensburg, 93040 Regensburg, Germany
E-mail: stefan.hofmann(AT)physik.uni-regensburg.de

We present an update on our analysis of the charmed meson ground state spectra, based on the
electrically neutral subset of the BMW N f = 2+1+1 gauge configurations that use the 3-HEX
smeared clover action. The analysis focuses on a systematic bootstrap evaluation of the hyperfine
mass splittings of the charmonium states J/ψ and ηc and the singly charmed D∗s and Ds mesons.
A preliminary analysis of the charmed baryon ground state spectra is also included.

34th annual International Symposium on Lattice Field Theory
24-30 July 2016
University of Southampton, UK

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:protect elax kern .16667em thraeprotect elax kern .16667em (AT)protect elax kern .16667em uni-wuppertal$.$de
mailto:protect elax kern .16667em sara$.$collinsprotect elax kern .16667em (AT)protect elax kern .16667em physik$.$uni-regensburg$.$de
mailto:protect elax kern .16667em durrprotect elax kern .16667em (AT)protect elax kern .16667em itp$.$unibe$.$ch
mailto:protect elax kern .16667em stefan$.$hofmannprotect elax kern .16667em (AT)protect elax kern .16667em physik$.$uni-regensburg$.$de


P
o
S
(
L
A
T
T
I
C
E
2
0
1
6
)
3
6
7

Ground state charmed spectra for N f = 2+1+1 QCD T. Rae

1. Introduction

The Babar, Belle, BES III and LHCb experiments have generated a vast amount of charmed
physics results; see e.g. Refs. [1, 2] as a guide to the experimental literature. A key technique for
understanding these results in terms of the fundamental degrees of freedom (quarks and gluons) is
Lattice QCD. For reviews see e.g. Refs. [3, 4, 5, 6, 7].

This proceedings contribution provides an update to Refs. [8, 9]. Our primary focus is on
the hyperfine mass splittings of the charmonium states J/ψ and ηc and the singly charmed D∗s
and Ds mesons, with the aim to understand the often significant, cut-off effects that accompany
Wilson fermion measurements. To have a good handle on this, we perform a systematic study
of our lattice measurements, looping over various reasonable analysis options. We also include
preliminary results for charmed baryons on one of our ensembles.

2. Lattice setup

The set of 27 electrically neutral 3-HEX ensembles of Ref. [10] is used for this calculation.
These were generated using the clover improved Wilson action with three levels of HEX gauge
link smearing [11] and N f = 1+ 1+ 1+ 1. Table 1 gives an overview of the ensembles used in
this analysis; they are spread over four lattice spacings. These ensembles feature pion masses from
440 MeV down to 195 MeV and approximately physical charm and strange quark masses.

Each ensemble typically has about 400 configurations, and 64 source positions per configura-
tion are used. One source wavefunction (a Gaussian with an approximately fixed width in physical
units) is used, while at the sink two wavefunctions are used (the same Gaussian, as well as a point
sink). Table 1 shows that the ensembles generally have large values of amc, which is a challenge
for charm physics on the lattice, as it leads to large cut-off effects.

With four lattice spacings available we are in a comfortable situation in the sense that we have
(assuming sufficient statistical precision) means and ways to check whether our data are in the
Symanzik scaling regime. Our treatment of the statistical analysis uses 2000 bootstrap resamples,
and it loops over a variety of systematic choices, which we will detail in the next section.

3. Method and systematics

To extract the masses (and amplitudes), we use one- and two-state fits to the correlation func-
tions. When there are multiple channels with shared observables, we perform the fits simultane-

β a[fm] amc (L/a)3× (T/a) Mπ [MeV] Number of ensembles

3.2 0.102 0.71 323×64 235−440 12

3.3 0.089 0.58 323×64, 483×64 195−410 6

3.4 0.077 0.47 323×64, 383×64 220−405 3

3.5 0.064 0.35 323×64, 483×64, 643×96 200−420 6

Table 1: Ensemble details: lattice spacing, charm quark mass, lattice extent, range of pion masses and
number of ensembles for each of the four gauge couplings. Further details are in provided in Ref. [10].
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Figure 1: Results of the per-β analyses at the physical mass point of the hyperfine splittings MD∗s −MDs (red
circles) and MJ/ψ −Mηc (blue squares) plotted versus αa (left) or a2 (right), where α is the strong coupling
constant. Since our analysis ignores disconnected contributions, the physical value of the latter mass splitting
is slightly shifted (see text for details). The results of the Regensburg analysis on CLS ensembles with the
lattice spacing a' 0.0855fm are shown in the right panel only, since non-perturbative improvement is used.

ously. To illustrate this point, for the pseudoscalar channels we simultaneously fit

|CPP(t)| = c2
(

e−Mt + e−M(T−t)
)
+ . . .

|CA4A4(t)| = d2
(

e−Mt + e−M(T−t)
)
+ . . .

|CPA4(t)|= |CA4P(t)| = cd
(

e−Mt + e−M(T−t)
)
+ . . . (3.1)

to the data with Gauss-Gauss wavefunctions, and we fit the same ansätze with one factor of c and d
replaced by c′ and d′, respectively, to the data with the Gauss-Point smearing combination. Taking
everything together, this leads to a joint fit of 8 channels with 5 shared parameters (M, c′ ∝ gP [the
pseudoscalar coupling] and d′ ∝ fP [the pseudoscalar decay constant] are of interest, while c and d
do not contain any fundamental physics information).

For a careful analysis of our systematic uncertainties, we loop over various choices of the
analysis strategy (on top of our bootstrap analysis which is designed to give correct statistical
uncertainties for a given analysis strategy). Here we discuss the most relevant options.

(1) The selection of the fitting interval for the correlation function eqn. (3.1) uses two methods:
(i) P-value maximization and (ii) χ2/dof minimization (details and examples are given in [9]).

(2) Choosing aMΩ to set the scale, this can be done (i) using the local ratio MX/MΩ ensemble
by ensemble or (ii) using a β -by-β extrapolation of aMΩ to the physical mass point.

(3) There are many choices for the chiral ansätze which describe the mass splittings f =

(MJ/ψ −Mηc)/MΩ and g = (MD∗s −MDs)/MΩ as a function of the quantities x = M2
π/M2

Ω
, y =

(2M2
K −M2

π)/M2
Ω

and z = M2
ηc
/M2

Ω
, which serve as quark mass proxies. We found two to be

reasonable: (i) f (x,y,z) = c0 + c1x+ c2y+ c3z and ditto for g(x,y,z) as well as (ii) f (xsea,yval) =

c0 + c1xsea + c2yval where xsea = (M2
π + 2M2

K +M2
ηc
)/M2

Ω
is used for both f and g, while yval =

2M2
ηc
/M2

Ω
is used for f (xsea,yval) and yval = (2M2

K−M2
π +M2

ηc
)/M2

Ω
is used for g(xsea,yval).
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(4) Handling of finite-volume effects in the data; i.e. a term which is asymptotically propor-
tional to exp(−MπL) may be added to a given chiral ansatz or not.

(5) The continuum extrapolation may be performed with discretization terms (i) αsa or (ii) a2.
Using this machinery, we first perform a β -by-β analysis, i.e. we attempt an extrapolation to

the physical mass point based on the 12, 6, 3 or 6 ensembles that are available at the given β (see
table 1). Obviously, at β = 3.4, for the time being, some of the coefficients need to be chosen
with priors. The result of a particular analysis [i.e. with a specific choice for the options described
under points (1) through (4) above] are shown in figure 1. We plot these hyperfine mass splittings
against αa (left panel) and a2 (right panel), where α = g2/(4π) is the strong coupling constant.
With tree-level improvement, we know that the left panel will show a linear behavior for a→ 0, but
in practice, this behavior was found in many instances with the second abscissa, too, over the range
of accessible lattice spacings [12]. This is to say that the αa contribution is there, but it may be
numerically subdominant to the a2 contribution. Ideally, one would have enough lattice spacings
and sufficient precision to tell these effects apart.

Fortunately, for the two hyperfine mass splittings in question, the experimental value is known,
and these two quantities may thus serve as a check whether our analysis procedure yields results
with a reliable estimate of the systematic uncertainty. However, there is a subtlety involved in
one case. Since our data ignore disconnected contributions, we need to “correct” the experimental
result of Mηc for this effect. Unfortunately, there is some disagreement on the size (and even the
sign) of these contributions in the literature [13, 14, 15, 16]. Given this situation, we decided to
leave the central value unchanged, but to add a systematic uncertainty of 3MeV to the experimental
value of MJ/ψ −Mηc . This value is indicated with a black asterisk in either panel of figure 1, and
also the experimental value of MD∗s −MDs (where no “correction” is needed) is shown.

With the data in figure 1 in hand, we can say that there is a tendency to produce a sensible
continuum limit, even though the splittings at the individual lattice spacings are quite far from the
known continuum values (at β = 3.2 we find MJ/ψ −Mηc ' 60MeV at the physical mass point,
which is about half of the continuum value). But it is also clear that the plots raise some doubt as
to whether all the data, out to β = 3.2, are in the Symanzik scaling regime – perhaps we need to
sacrifice the coarsest one or two lattice spacings, and perhaps we need to add an even finer lattice
spacing to have a controlled continuum limit.

In such a situation, it is particularly useful to compare to another discretization which is similar
in spirit but still sufficiently different to provide a check. The right panel of figure 1 includes
the results from an analysis of the Regensburg group (part of the SFB-TR55 that also includes
Wuppertal) on CLS ensembles for a single lattice spacing a ' 0.0855fm. Two strategies to reach
the physical mass point have been implemented (fixed 2mud +ms versus fixed ms). Since non-
perturbative improvement is employed, it only makes sense to include the results in the a2-scaling
plot. While the deviations from the known continuum results are smaller than those on the 3-HEX
ensembles at comparable lattice spacings, discretization effects are still sizeable and the double
difference, (MD∗s −MDs)− (MJ/ψ −Mηc), is smaller than in the continuum.

To summarize the hyperfine splitting part, we feel it is fair to say that we have solid results in
the per-β analysis approach, which, in addition, suggest that at least the finer lattice spacings are
in the Symanzik scaling regime, while for the coarser ones this is less clear. However, at the time
of this writing, we lack a combined all-β functional ansatz which yields an acceptable global fit to
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Figure 2: SU(4) multiplets of baryons made of u, d, s and c quarks (left: 20-plet, right: 20′-plet). The red
nodes indicate those channels which are available on all of our electrically neutral 3-HEX ensembles.

all available data. We hope that more data at β = 3.4 and β = 3.5 will help to clarify the situation.

4. Charmed baryon mass plateaus

We performed a preliminary study of the signal for the charmed baryons on one of the un-
charged 3-HEX ensembles. This will enable us to explore the SU(4) multiplets of baryons (20-plet
and 20′-plet) made of u, d, s and c quarks (see figure 2 for an overview).

The effective mass plateaus of the totally symmetric JP = 3/2+ 20-plet states Ω−, Ω0
c , Ω+

cc,
Ω++

ccc , visualized on the front edge of the pyramid in figure 2, are shown in figure 3. Clearly the
signal-to-noise ratio improves with every s→ c substitution. In addition, the Ω++

ccc state assumes
its plateau first. At this time, it is not clear to us whether this means that the mass gap to the first
excited state is largest in this case or that the width of the Gaussian wave function (used at the
source and the sink) is most appropriate in this case and a bit too narrow for the lighter states.

The effective mass plateaus of the mixed symmetry JP = 1/2+ 20′-plet states, as visualized in
the right panel of figure 2, are shown in figure 4 for zero charm content and in figure 5 for one or
two valence charm quark content. Again we find an improvement of the signal-to-noise ratio with
every u,d→ s and every u,d,s→ c replacement, but this time we do not see any marked difference
in terms of how much Euclidean time is needed to assume the plateau value.

Overall it seems fair to say that baryon mass spectroscopy with charm content looks attractive
in the sense that data with good signal-to-noise ratio are available. But care must be exercised
to vary both atini and atfin of the primary fit window within reasonable bounds, and most likely
two-state fits are mandatory in order to obtain reliable baryon masses on these ensembles.
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