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We report on our ongoing computation of the perturbative running of the Yang-Mills coupling us-
ing gradient flow techniques. In particular, we use the gradient flow method with twisted boundary
conditions to perform a perturbative expansion of the expectation value of the Yang-Mills energy
density up to fourth order in the coupling at finite flow time. We regularise the resulting integrals
using dimensional regularisation, and reproduce the universal coefficient of the 1/ε term in the
relation between bare and renormalised couplings. The computation of the finite part leading to a
determination of the Λ parameter in this scheme is underway.
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Perturbative running of the twisted Yang-Mills coupling in the gradient flow scheme Eduardo I. Bribian

1. Introduction

In this talk we report on our ongoing calculation of the perturbative running coupling of the
SU(N) gauge theory in the twisted gradient flow scheme (henceforth TGF) [1]. The purpose of
the project is twofold. First, we aim at a determination of the ratio of Λ parameters between this
scheme and the MS scheme of dimensional regularisation, a quantity that can be exactly determined
at one-loop in perturbation theory (see [2] for a recent non-perturbative determination). Second,
we want to analyse, through the running coupling, the interplay between volume and group degrees
of freedom in the gauge theory. This comes along with the idea of volume independence, see e.g.
[5]-[11], which has been around in twisted gauge theories ever since the formulation of the Twisted
Eguchi-Kawai model [5]; a single site formulation of SU(N) lattice gauge theory reproducing in
the large N limit the infinite volume gauge theory. The idea has since been generalised into the
hypothesis that, in a SU(N) theory on a d-dimensional twisted torus, the physical size and the size
of the gauge group always appear combined into an effective length l̃, to be defined below [12, 13].
In this work, we will use l̃ to set the scale of the running coupling [14] and will test whether or not
volume independence holds.

2. The Twisted Gradient Flow Scheme

In this context, we used the TGF scheme [1] to obtain the running of the renormalised ‘t Hooft
coupling λ = g2N, with g denoting the Yang-Mills coupling.

We start by formulating the SU(N) gauge theory on a d-dimensional torus with twisted bound-
ary conditions (TBC). We shall restrain ourselves to the case of the symmetric twist: nµν = εµνklg,

where k and lg are two coprime integers and εµν = θ(ν−µ)−θ(µ−ν). The gauge length lg =N
2
dt

is given in terms of both N and the number dt of dimensions with TBC. We will consider a torus
of period length l in the twisted directions, and l̃ = lgl, in the non-twisted ones [15], for a torus
volume V = ldt l̃d−dt . Then, the effective volume controlling finite volume effects is Veff = l̃d .

The gradient flow [16]-[18] works by defining an additional time dimension t called flow time,
and introducing a new flow field Bµ(x, t) following the so-called flow equations:

∂tBν (x, t) = DµGµν (x, t) (2.1)

with the initial condition that Bµ(x,0) matches the original Aµ(x) Yang-Mills gauge field. Dµ and
Gµν respectively denote the flow field’s covariant derivative and field strength.

The action density at finite flow time, E(t), is a renormalised quantity allowing to define a
renormalised coupling, which in the TGF scheme runs with the size of the twisted torus [1]. We
will follow the proposal in Ref. [14] and set the running scale in terms of l̃. The coupling is then:

λTGF(l̃) = N −1(c)
t2〈E(t)〉

N

∣∣∣∣
t= 1

8 c2 l̃2
E(t) =

1
2

Tr Gµν(x, t)Gµν(x, t) (2.2)

Here N denotes a normalisation constant obtained by matching the coupling to the tree level bare
one, and given in terms of the Jacobi theta function θ3:

N =
c4 (d−1)
128l̃d−4

θ
d−dt
3

(
0, iπc2){

θ
dt
3

(
0, iπc2)−θ

dt
3

(
0, iπc2l2

g
)}

; θ3 (0, is) = ∑
m∈Z

e−πsm2

(2.3)
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3. Perturbative expansion of 〈E〉

We are now ready to derive the perturbative expansion of 〈E〉. We have followed the strategy
introduced in Ref. [19], adapted to the finite volume twisted setup. We expand the flow fields in
powers of the coupling and solve the modified flow equation order by order in perturbation theory;

∂tBν(x, t) = DµGµν(x, t)+Dν∂µBµ(x, t); Bµ(x, t) = ∑
k

gk
0(t)B

(k)
µ (x, t). (3.1)

This is most easily done in momentum space, which in our case reads:

B(k)
µ (x, t) =

1√
V

′

∑
q

eiqxB(k)
µ (q, t)Γ̂(q). (3.2)

All momenta are quantized in units of l̃. The prime indicates the exclusion from the sum of mo-
menta for which mµ = 0(mod lg) in all twisted directions. The momentum dependent basis Γ̂(q)
is characterised by the following commutation relation and structure constants:[

Γ̂(p), Γ̂(q)
]
= iF(p,q,−p−q)Γ̂(p+q); F(p,q,−p−q) =−

√
2
N

sin
(

1
2

θµν pµqν

)
. (3.3)

We defined an auxiliary tensor 2πθµν = θ̃ l̃2ε̃µν , where ε̃µν satisfies ε̃µνενλ = δµλ , and θ̃ = k̄/lg,
with k̄ given by the twist: kk̄ = 1(mod lg).

Expanding the action density in terms of the B(k)
µ fields up to order g4

0, we obtained several
terms such as, among others (following the notation in [19]):

E0 =
g2

0
2NV

′

∑
q
(q2

δµν −qµqν)
〈

B(1)
µ (−q)B(1)

ν (q)
〉
, (3.4)

E1 = −
g3

0

NV 3/2

′

∑
p1,p2,p3

F(p1, p2, p3)δ (p1 + p2 + p3)ip1µ

〈
B(1)

ν (p1)B
(1)
µ (p2)B

(1)
ν (p3)

〉
, (3.5)

E2 =
g3

0
NV

′

∑
q
(q2

δµν −qµqν)
〈

B(1)
µ (−q)B(2)

ν (q)
〉
. (3.6)

Introducing the solutions of the flow equations into these expressions, defining q = p+ r and after
some algebra we are left with:

E0 =
λ0

2Veff

′

∑
q

e−2tq2

(
(d−1)+

λ0

2Veff
∑
p

NF2(r, p,−q)
p2q2r2

[
(3d−2)q2−2(2−d)2 p2]) , (3.7)

E1 =
3(1−d)λ 2

0

2V 2
eff

∑
r,p

NF2(r, p,−q)
p2r2 e−t(p2+q2+r2), (3.8)

E2 =
λ 2

0

V 2
eff

∫ t

0
dx ∑

r,p

NF2(r, p,−q)
p2q2r2 e−(2t−x)q2−x(r2+p2) (3.9){

(d−1)q2(r2 + p2 +q2)+2(d−2)(p2r2− (p · r)2)
}
.

The Schwinger representation will be used for the propagators, and we will focus on one of the
integrals contributing to E2 to illustrate our computation procedure:

I(t) =
1

V 2
eff

∫ t

0
dx
∫

∞

0
dz∑

r,p
NF2(r, p,−q)e−(2t−x)q2−x(r2+p2)−zr2

. (3.10)
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We fix t to c2 l̃2/8, as our objective is to determine the running coupling at that scale. After rescaling
some variables and using the quantisation of momenta in units of l̃, we arrive at:

I(t0) =
ĉ2

16π2 l̃2d−4

∫ 1

0
dx
∫

∞

0
dz ∑

m,n∈Zd

e−π ĉ(2m2+(z+2x)n2−2xm·n)
(

1− cos(2πθ̃m · ε̃ ·n)
)
, (3.11)

where ĉ = πc2/2. A more compact way of writing the momentum sums is possible using Siegel
theta functions:

Θ
(
0|iA(s,u,v, θ̃)

)
= ∑

M∈Z2d

exp
{
−πMtA

(
s,u,v, θ̃

)
M
}
. (3.12)

Where we defined Mt = (m,n) and the following matrix:

A
(
s,u,v, θ̃

)
=

(
sĉId vĉId + iθ̃ ε̃

vĉId− iθ̃ ε̃ uĉId

)
(3.13)

These theta functions always appear in the same combination, so we reabsorbed them into:

Fc
(
s,u,v, θ̃

)
=

ĉ2

16π2 l̃2d−4
Re
(
Θ(s,u,v,0)−Θ

(
s,u,v, θ̃

))
. (3.14)

This way the previous example can be rewritten as:

I(t0) =
∫ 1

0
dx
∫

∞

0
dzFc

(
2,z+2x,x, θ̃

)
. (3.15)

The same can be done will all the terms that appear at order λ 2
0 . For example:

E1 =
3(1−d)λ 2

0
2Veff

∫ 1

0
dx
∫

∞

0
dzzFc

(
2+ xz,2+(1− x)z,1, θ̃

)
. (3.16)

4. Regularisation

Several of the expressions in the expansion of 〈E〉 are divergent, and thus require regularisa-
tion. We will use dimensional regularisation, in a way to be specified below, by setting d = 4−2ε .

The first step is to identify where these divergences occur. Since the matrix A(s,u,v, θ̃) is
symmetric and has a positive definite real part if detA(s,u,v,0) 6= 0, the sum over momenta in Fc

will be convergent unless the determinant at θ̃ = 0 vanishes. For our integrals, that happens for
either u = v = 0 or s = u = v = 2. Only the first case matters, as a shift in momentum within the
sums can bring the latter case to the former. In order to make this more visible, we used Poisson
summation to rewrite the theta function:

Θ
(
0|iA

(
s,u,v, θ̃

))
= (ĉu)−d/2

∑
m

exp
{
−π ĉsm2}

∑
n

{
− π

ĉu
(n− iĉvm− θ̃ ε̃m)2

}
. (4.1)

And then it is immediate that the u = v = 0 divergences occur for:

• The terms in n = 0 for θ̃ = 0.

• The terms in n = 0 for which mµ = 0( mod lg), ∀µ in a twisted plane, even if θ̃ 6= 0.
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We may then isolate these two divergent contributions. We define:

H
(
s,u,v, θ̃

)
=

ĉ2

16π2 l̃2d−4 ∑
n

′

∑
m

Re exp
{
−π ĉ(sm2 +un2 +2vm ·n)+2iθ̃m · ε̃ ·n)

}
, (4.2)

which is automatically finite for θ̃ 6= 0 (notice the prime in the sum over m). We then rewrite Fc as:

Fc
(
s,u,v, θ̃

)
= H (s,u,v,0)−H

(
s,u,v, θ̃

)
. (4.3)

All the divergences are contained in the term H (s,u,v,0), which can be rendered finite by subtract-
ing:

Hdiv (s,u,v) =
ĉ2

16π2 l̃2d−4
(ĉu)−

d
2

′

∑
m

exp
{
−π ĉ

su− v2

u
m2
}
. (4.4)

One of the most important tests to our calculation is to reproduce the universal coefficient of
the 1/ε term in the relation between bare and renormalised couplings. The divergent piece of Fc

can be computed in dimensional regularisation by rewriting it in terms of Jacobi theta functions:

Fdiv
c (s,u,v) =

ĉ2−d/2

16π2 l̃2d−4ud/2
θ

d−dt
3 (0,α)

{
θ

dt
3 (0,α)−θ

dt
3

(
0, l2

gα
)}

; α = iĉ
su− v2

u
. (4.5)

Let us consider I in Eq. (3.15). Changing variables z→ z/x, and using the duality relations of θ3:

I(t0) =
ĉ(2−d)

16π2 l̃(2d−4)

(
(2ĉ)d/2

′

∑
m

e−2πm2ĉ
)∫ 1

0
dx
∫

∞

0
dzx1− d

2 (4+2z− x)−
d
2 +finite terms. (4.6)

This can be compared with the corresponding expression appearing in infinite volume:

I∞(t0) =
N2−1

N2 t(2−d)
0 (4π)−d

∫ 1

0
dx
∫

∞

0
dzx1− d

2 (4+2z− x)−
d
2 . (4.7)

Setting t0 = ĉl̃2/(4π), one easily derives that:

I(t0) = Ac I∞(t0)+finite terms, Ac =
N2

N2−1

(
(2ĉ)d/2

′

∑
m

e−2πm2ĉ
)
. (4.8)

The same relation holds for all terms at order λ 2
0 . Similarly, for the leading term in λ0:

E
(0)

0 (t0) =
λ0(d−1)

2Veff

′

∑
m

e−2πm2ĉ = Ac E
(0)

0 (t0)
∣∣∣
∞ vol

. (4.9)

This implies, in particular, that〈
E(t0)

N

〉∣∣∣
TBC

= Ac

〈
E(t0)

N

〉∣∣∣
∞ vol

+finite terms, (4.10)

and, using the results in [19],〈
E(t0)

N

〉∣∣∣
TBC

=
λ0(d−1)

2Veff

( ′

∑
m

e−2πm2ĉ
){

1+
(

11
48π2ε

+α

)
λ0 +O(λ 2

0 )
}
, (4.11)

with α finite, as we wanted to prove.
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Finally, what remains in order to compute the Λ parameter in this scheme is to determine the
value of the finite pieces. There are two contributions to compute: the terms included in Fc after
subtracting Hdiv, given by:

Ffin
c
(
s,u,v, θ̃

)
= H (s,u,v,0)−Hdiv (s,u,v)−H

(
s,u,v, θ̃

)
, (4.12)

and the finite parts of Fdiv
c . The latter can be easily treated with algebraic programs such as Math-

ematica. As for the former, it is a combination of several multiple integrals in flow time of Siegel
theta functions, for whose computation we have prepared a numerical code in C++.

The code generates the Siegel theta function at each point by summing over increasing values
of the momenta in the sum until convergence is reached (defined as a variation of less than 0.1%
with respect to the last value when adding a new order in momenta). It uses the trapezoidal rule
to evaluate the flow time integrals up to the desired precision (0.01% in the current tests). For
integrals whose upper limit goes to infinity, the integration is separated into intervals of length
∆t = 1. Trapezoid integration is then performed for each interval starting from the lower bound
until the last interval’s contribution represents less than 0.01% of the total. Nevertheless, as the
computations are still ongoing, we will present the combined results elsewhere.

5. Summary

In order to obtain the running of the ’t Hooft coupling constant in the twisted gradient flow
scheme, we studied the action density up to fourth order in perturbation theory. To that goal, we
expanded the flow fields in powers of the coupling, solved the flow equations, and rewrote the
expectation value of the result in terms of Siegel theta functions.

This formulation allowed us to identify the terms from which UV divergences were coming,
terms which we subsequently subtracted from the observable so as to isolate the finite part. This
would allow us to determine the Λ parameters between this scheme and the MS one in dimensional
regularisation. However, the numerical computations are still underway, and will be published later
on.

While the computation of the finite part is our main concern, the diverging terms are also very
relevant, as their study allowed us to reproduce the universal 1/ε term in the relation between bare
and renormalised couplings as a consistency check to the validity of our scheme.

Last but not least, the hypothesis of volume independence is also being tested. Assuming
θ̃ = k̄/lg is fixed, everything in the previous formulae is given in terms of l̃. Note, however, that
the presence of the prime in the momentum sums introduces an explicit N dependence in our
expressions, an observation already made in the context of the TEK one-site model [20]. As an
example, consider the sum appearing in Ac. In d = 4 it can be expressed as:

′

∑
m

e−2πm2ĉ = ∑
m6=0

e−2π ĉm2− ∑
m6=0

e−2π ĉNm2
. (5.1)

The explicit N dependence is thus exponentially suppressed with N, which should lead to small
corrections to the volume independence conjecture. Gauge and spacetime degrees of freedom
would thus be linked, and would be redundant for large values of N. Nevertheless, this requires
further testing; and other factors need to be taken into account, such as the deviation stemming
from being unable to keep θ̃ constant while changing N; which will be studied in the future.
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