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1. Introduction

There are two independent methods to extract Vcb with B-meson decays. One is the heavy
quark expansion method based on QCD sum rules with inclusive B-meson decays: B̄→ Xc`ν̄ ,
and the other is the lattice QCD method to calculate the semileptonic form factors in the analysis
of the exclusive B-meson decays: B̄→ D(∗)`ν̄ . There exists about 3σ tension in |Vcb| between
the inclusive and exclusive decay channels [1, 2]. The future experiment at KEK (Belle 2) will
increase statistics for B-meson decays dramatically (by a factor of 50). It is time to improve the
lattice results of semileptonic form factors for the exclusive B-meson decays. Since the dominant
error in lattice QCD results for |Vcb| comes from the heavy quark discretization, we simulate the
Oktay-Kronfeld (OK) action [3], a highly improved version of the Fermilab formulation.

If we use the OK action instead of the clover action (the original action of the Fermilab for-
mulation [4]), then the power counting estimate suggests that the discretization error due to charm
quarks can be reduced from 1.0% (clover) down to 0.2% (OK) for the semileptonic form factor
for the B̄→ D∗`ν̄ decay at zero recoil. The OK action is improved to O(λ 3) in HQET power
counting, and O(v6) in NRQCD power counting, while the clover action is improved to O(λ 2)

in HQET and to O(v4) in NRQCD. One drawback is that the OK action takes significantly more
computing resources (by a factor of ≈ 50) to calculate its propagator. We measured heavy-light
(HL) and heavy-heavy (HH) meson spectra to probe the improvement by the OK action, and the
inconsistency parameter and hyperfine splitting showed clear improvement [5].

In this paper, we tune hopping parameters using the physical Bs and Ds meson spectrum on
the coarse MILC HISQ ensemble at a≈ 0.12fm.

2. Simulation Details

We use the coarse (a≈ 0.12 fm) ensemble of the MILC HISQ lattices [6]. The lattice geometry
is 243×64. The tadpole improvement coefficient is u0 = 0.86372 from the plaquette Wilson loop.
The sea quark masses are am` = 0.0102 for light quarks, ams = 0.0509 for the strange quark, and
amc = 0.635 for the charm quark. For the HL mesons, B(∗)

s and D(∗)
s , we use the HISQ action for

the strange quark, and the OK action for charm and bottom quarks. Heavy quark propagators are
generated using an optimized BiCGStab inverter [7]. In the OK action, the tadpole improved bare
quark mass m0 is related to the hopping parameter κ as follows,

am0 =
1

2u0κ
− (1+3ζ rs +18c4) (2.1)

where c4 is the tree-level matching coefficient of a dimension-7 operator in the OK action [3].
Here, we set ζ = 1 for isotropic lattices and rs = 1 as is standard for the Wilson clover action. To
tune the hopping parameter κ to the physical values, we simulate four κ values each for the bottom
and the charm quarks as shown in Table 1. The parameters of covariant Gaussian smearing used at
both the source and sink of heavy quark propagators to reduce the excited state contamination [8]
are given in Table 1. For HISQ valence quarks, we use point source and sink.

We calculate HL and HH meson correlators on 500 configurations using 6 sources for bottom
quarks and 3 sources for charm quarks. We use jackknife resampling to estimate the statistical
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amv
s ε

0.0509 -0.0017468

(a) HISQ parameters

κ (bottom) κ (charm) σ NGS

0.042, 0.041, 0.040, 0.039 0.049, 0.0487, 0.0483, 0.048 5 60

(b) Tadpole improved OK parameters

Table 1: Parameters used for generating the valence quark propagators. (a) mv
s is set to the physical strange

quark mass, and ε is the coefficient of the Naik term in the HISQ action [6]. (b) κ values for the bottom and
charm quarks. The covariant Gaussian smearing parameters σ and NGS are defined in Ref. [8].

error. We fix the time separation between sources to ∆t = 6. We choose the initial source time slice
randomly for each configuration. We use 11 different momentum projections for the two-point
meson correlation functions. To increase the statistics, we use the time reflection symmetry of the
two-point correlation functions.

3. Fits to the Meson Correlators and the Dispersion Relation

The numerical data for the two-point meson correlators is fit using

f HL(t;p) = Ae−Et(1− (−1)tre−∆Et)+Ae−E(T−t)(1− (−1)tre−∆E(T−t)) (3.1)

f HH(t;p) = Ae−Et +Ae−E(T−t). (3.2)

The HL meson correlator, f HL, has 4 fit parameters: the ground state energy and amplitude (E,
A), an amplitude ratio (r = Ap/A), and energy difference (∆E = E p−E), where the superscript p
stands for the opposite parity partner state that is present in staggered fermion correlation functions.
f HH is the function used to fit the HH mesons. The range 12≤ t ≤ 19 is used to fit the HL mesons
and 12 ≤ t ≤ 16 for the HH mesons. The ground state energy E(p) is then fit using the following
dispersion relation:

E(p) = M1 +
p2

2M2
− (p2)2

8M3
4
− a3W4

6

3

∑
i=1

p4
i , (3.3)

to obtain M1 the rest mass, M2 the kinetic mass, M4 the quartic mass, and W4 the Lorentz symmetry
breaking term. In both fits we use the full covariance matrix with trivial priors.

4. Kappa Tuning

We determine the hopping parameters κb and κc such that the kinetic masses are equal to the
physical Bs and Ds masses, respectively. We tune the kinetic mass M2 rather than the rest mass M1.
The form factors and decay constants which we are interested in are independent of the rest mass
M1 in the Fermilab interpretation of improved Wilson fermions.

We use the HQET inspired fitting function for kinetic HL meson masses,

aM2(κ) = d0 +am2(κ)+
d1

am2(κ)
+

d2

(am2(κ))2 , (4.1)

where M2 is the kinetic mass of the HL meson, and m2 is the kinetic mass of the heavy quark. We
determine d0, d1 and d2 using the correlated least χ2 fitting. Here, m2(κ) is related to the bare mass
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Figure 1: Plot of the pseudoscalar meson mass Ds (Bs) versus the kinetic quark mass mc
2 (mb

2) defined in
Eq. (4.2). The physical κc and κb (shown as red triangles and given in Table 2) are determined by tuning the
Ds and Bs pseudoscalar masses to their experimental values.

m0(κ) at the tree level as follows,

1
am2

=
2ζ 2

am0(2+am0)
+

rsζ

1+am0
. (4.2)

Figure 1 shows the interpolation of m2 to the physical values for the bottom and charm quarks.
Results for κb and κc are summarized in Table 2. In Table 2, we present the κ-tuning results using
physical values of the pseudoscalar meson mass (MX ), vector meson mass (MX∗), and the spin-
averaged mass (MX +3MX∗)/4 for X = Bs or Ds. We find that all the results for κ determined from
different spin states are consistent within statistical uncertainty. We also perform another fit using a
simpler fitting function: aM2 = d0+am2+d1/(am2), and take the difference in κ as the systematic
error due to ambiguity in the fitting function.

X MX
Bs

(GeV) aMX
Bs

κb

pseudoscalar 5.36682(22) 3.4051(61) 0.04000(63)(2)(2)
vector 5.4154+0.0024

−0.0021 3.4360+0.0076
−0.0074 0.03932(90)(3)(3)

spin-average 5.4033+0.0019
−0.0016 3.4283+0.0072

−0.0071 0.03950(80)(3)(4)

X MX
Ds

(GeV) aMX
Ds

κc

pseudoscalar 1.96827(10) 1.2488(23) 0.048517(63)(9)(1)
vector 2.1121(4) 1.3401(26) 0.048281(163)(12)(2)
spin-average 2.0761(3) 1.3173(25) 0.048346(126)(11)(3)

Table 2: Results of tuning the κ for the bottom (κb) and charm (κc) quarks. For converting the experimental
M to aM, we use a = 0.12520(22) fm [9] . In κb,c, the first error is statistical, the second error is propagation
of experimental error in MX , and the third error is systematic to account for the uncertainty in the fit ansatz.

5. Inconsistency Parameter

The inconsistency parameter I [10, 11] is used to see O(p4) improvement in the OK action.
Let us use Q for heavy quarks and q for light quarks, and define δM ≡M2−M1 as the difference
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Figure 2: (Left) Inconsistency parameter I versus the pseudoscalar mass aM2Q̄q for charm (green squares)
and bottom (blue circles) quarks. (Right) Dispersion relation for the HL bottom meson with κ = 0.040.
The rest mass, M1 = 2.112(2), is given by the blue circle at ppp = 0. The kinetic mass, M2 = 3.408(176), is
extracted from the fit and shown by the red triangle translated to E = 2.112. Note that the determination of
the error in M2 is much larger than in M1.

between the kinetic and rest masses. Then the inconsistency parameter I is

I ≡
2δMQ̄q− (δMQ̄Q +δMq̄q)

2M2Q̄q
=

2δBQ̄q− (δBQ̄Q +δBq̄q)

2M2Q̄q
(5.1)

Here the binding energies B1,2 are

M1Q̄q = m1Q̄ +m1q +B1Q̄q, M2Q̄q = m2Q̄ +m2q +B2Q̄q (5.2)

for HL mesons. Here the quark masses m1,2 are defined by the quark dispersion relation, which
is similar to Eq. (3.3). We neglect the light quarkonium contribution δMq̄q (and δBq̄q). In Fig. 2
we present results for I for pseudoscalar mesons. Near the Bs region, I is consistent with the
continuum limit, I = 0, within the error bars, which indicates a dramatic improvement from that of
the Fermilab action: I ≈−0.6 [5].

6. Hyperfine Splittings

We define the hyperfine splittings of HL and HH pseudoscalar mesons, ∆1 and ∆2 as

∆1 = M∗1 −M1, ∆2 = M∗2 −M2 , (6.1)

and plot ∆2 versus ∆1 in Fig. 3. As illustrated in Fig. 2, M2 has much larger errors than M1 since it
is extracted from the slope versus momentum. Consequently, ∆2 has larger errors than ∆1.

The HQET expansion for ∆1 in the HL meson system is given in Ref. [12]:

∆1 = M∗1 −M1 =
4λ2

2mB
− 4ρ2

4m2
E
+

8T2

2m22mB
+

4(T4−T2)

4m2
B

+O

(
1

m3

)
, (6.2)

where λ2, ρ2, T2, T4 are HQET matrix elements defined in Ref. [12]. For the OK action, the
matching conditions are m2 = mB = mE [3]. Thus, ∆1 defined in Eq. (6.2) is in terms of the kinetic
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(a) Hyperfine splitting for HL mesons
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(b) Hyperfine splitting for HH mesons

Figure 3: Hyperfine splitting ∆2 versus ∆1 for the HL (Fig. 3(a)) and the HH (Fig. 3(b)) mesons in units of
r1 taken from Ref. [6]. The black line represents the continuum result, ∆1 = ∆2.

quark mass, which was used to tune the κ to the physical value. To analyze ∆1, we recast Eq. 6.2
as

a∆1 = h0 +
h1

am2
+

h2

(am2)2 +
h3

(am2)3 , (6.3)

where h1 = 2a2λ2 and h2 = a3(−ρ2 +T2 +T4). Because we have only 4 data points, we set h3 = 0
in the fits. Correlated fits, shown in Fig. 4, give h0 = 0 within statistical uncertainty, consistent
with the theoretical prediction. Our results, with h0 set to zero in the fits are summarized in Table
3. The corresponding hi from fits to ∆2 were very poorly determined.

We are performing simulations at other values of the lattice spacing and quark mass in order
to perform the continuum-chiral extrapolation and compare with the experimental value.

type h1 h2 λ2 (GeV2) A (GeV3) ∆1 (MeV) ∆exp (MeV)

Bs 0.075(15) 0.002(35) 0.093(19) 0.01(14) 36.4(3.6) 48.6+1.8
−1.6

Ds 0.0697(45) 0.0065(33) 0.0866(59) 0.025(13) 118.9(3.4) 143.8±0.4

Table 3: Hyperfine splittings, λ2 and A≡−ρ2 +T2 +T4 for the Ds and Bs mesons at the physical values of
κc and κb. ∆exp is the experimental value [13].

7. Summary and Plan

We tuned the bottom and charm quark masses using physical values for B(∗)
s and D(∗)

s mesons.
Estimates from fits to the pseudoscalar, vector, and spin-averaged mesons masses are consistent
within their statistical uncertainty (see Table 2). We used estimates from the pseudoscalar mesons
for the analysis of the hyperfine splittings. These values of κb and κc are now being used to measure
the semileptonic form factors for the exclusive decays B̄→ D(∗)`ν̄ .
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Figure 4: Plots of ∆1(Ds) (left panel) and ∆1(Bs) (right panel) versus the kinetic masses, mc
2 and mb

2, of the
quarks. Results at the physical quark masses, tuned using the pseudoscalar meson masses, are shown by the
red triangles and given in Table 3.
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