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magnetic effect. However, it has been estimated only in the strong magnetic field. We discuss the
relaxation time away from the strong magnetic field limit.
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1. Introduction

The electric conductivity of the semi-metals under the strong Magnetic Field with the Electric
Field parallel to it offers an interesting physics. In this circumstance, it was shown that in the strong
magnetic field limit, the electric current can be understood as a manifestation of chiral anomaly
effect and is proportional to the U(1) chiral anomaly as

J ∝ E ·B. (1.1)

This phenomena was originally predicted by Argyres and Adams [1] and further studied by Nielsen
and Ninomiya [2]. This phenomena is now called chiral magnetic effect and is now getting a
renewed interest in the quark gluon plasma [3]. Recently experiments has started observing the
above anomaly induced current in Weyl seim-metals [4][5][6][7] , and in Dirac semi-metals [8][9].
Since the experiment measures the magnetic field dependence of the conductivity for a wide range
of 0 to 10 Tesla, it would be interesting to understand it even away from the strong magnetic field
limit.

2. Basics of the transport theory

The mechanism of the chiral magnetic effect is the following. Let us take the direction of the
magnetic field as the z axis. Due to the strong magnetic effect , the electron states in the x and y
directions form Landau levels. If one is interested in the low energy physics at the strong magnetic
field limit, only the lowest Landau levels contribute to the physics so that the system effectively
becomes the system of electrons in 1+1 dimension. When electric field in the z direction, the elec-
trons receive a drift force and electric charge flows. Due to the scattering with impurities, phonons
or other electrons the momentum of the electrons are flipped which makes the static current flow
as a result of the balance between the drift and the scattering as shown in Fig.1

Figure 1: Drift from the electric field versus the scattering effect.

This means that the scattering time determines the size of the current. So far the scattering time
is computed in the strong mangetic field regime where only the lowest Landau level contribute. In
this report, we calculate the scattering time for weaker magnetic field regime where the second
lowest Landau levels also contribute. For simplicity, we work at zero temperature and assume that
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the scattering with impurities is the main source. We also employ the low energy effective field
theory to describe the electron near the Fermi level. Although we have to work for the relativistic
fermion to describe the low energy behavior of the electrons in Weyl and Dirac semi-metals, in this
exploratory study we employ non relativistic fermion as a toy model. The relativistic effect is study
by another author [10].

Consider the probability distribution function f (n,Py,Pz, t) for the electrons at the n-th Landau
level with momentum Py,Pz in the y and z directions. Here, we have taken the gauge for the vector
potential corresponding to the magnetic field is given as

A = (0,Bx,0), (2.1)

where B is the magnitude of the magnetic field. In this gauge, the momentum Py is a good quan-
tum number which is the labels to distinguish the degenerate states within the n-th Landau level.
Applying a weak electric field

E = (0,0,E), (2.2)

the Boltzmann equation is given as

∂
∂ t

f (n,Py,Pz, t)− eE
∂

∂Pz
f (n,Py,Pz, t) =

(
∂
∂ t

f (n,Py,Pz, t)
)

collision
, (2.3)

where the second term on the left hand side is the drift term and the right hand side is the collision
term. The collision term is defined as(

∂
∂ t

f (n,Py,Pz, t)
)

collision

= −∑
n′

∫ d2P′

(2π)2 f (n,Py,Pz, t)W (n,Py,Pz → n′,P′
y,P

′
z)(1− f (n′,P′

y,P
′
z , t))

+∑
n′

∫ d2P′

(2π)2 f (n′,P′
y,P

′
z , t)W (n′,P′

y,P
′
z → n,Py,Pz)(1− f (n,Py,Pz, t)), (2.4)

where W is the transition probability per unit time.
We now consider the case where the electric field is very weak and can be treated perturba-

tively. Then the probability distribution function can be desrcibed as

f (n,Py,Pz, t) = f0(ε(n,Pz))+δ f (n,Py,Pz, t), (2.5)

where f0 is the probability distribution function in equilibrium for the Landau level with no electric
field and δ f is a small deviation of O(eE). ε(n,Pz) is the energy of the electron at the n-th Landau
level and momentum Pz. (Note that Py does not contribute to the energy. )

Assuming small deviation from the equilibrium and taking only linear term in δ f , the defining
equation for the collision term reduces to(

∂
∂ t

f (n,Py,Pz, t)
)

collision

= −∑
n′

∫ d2P′

(2π)2W (n,Py,Pz → n′,P′
y,P

′
z)(δ f (n,Py,Pz, t)−δ f (n′,P′

y,P
′
z , t)). (2.6)
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To solve the Boltzmann equation, one often makes the relaxation time approximation(
∂
∂ t

f (n,Py,Pz, t)
)

collision
≈− 1

τ(n,Py,Pz)
δ f (n,Py,Pz). (2.7)

Substituting Eq. (2.6) to Eq.(2.3), the static solution of the Boltzmann equation is given as

δ f (n,Py,Pz) = τ(n,Py,Pz)eE
∂

∂Pz
f0(ε(n,Pz)) = τ(n,Py,Pz)eE

∂ε(n,Pz)
∂Pz

f ′0(ε) (2.8)

Substituting Eq.(2.7) and Eq.(2.8) into Eq.(2.6) and using the energy conservation in Fermi’s
Golden rule, one obtains

∂ε(n,Pz)
∂Pz

= ∑
n′

∫ d2P′

(2π)2W (n,Py,Pz → n′,P′
y,P

′
z)(τ(n,Py,Pz)

∂ε(n,Pz)
∂Pz

− τ(n′,P′
y,P

′
z)

∂ε(n,P′
z)

∂P′
z

) (2.9)

from which one can determine the scattering time τ . In the case of electrons under the magnetic
field, the energy is given as

ε(n,Py,Pz) =
eB
m

(n+1/2)+
P2

z

2m
, (2.10)

where m is the mass of the electron. Eq.(2.9) is further simplified as

Pz = ∑
n′

∫ d2P′

(2π)2W (n,Py,Pz → n′,P′
y,P

′
z)(τ(n,Py,Pz)Pz − τ(n′,P′

y,P
′
z)P

′
z) (2.11)

In Ref.[1], they computed the scattering time for non relativistic fermion system in the strong
coupling regime where only the lowest Landau level (n = 0) contributes.

3. Coupled equations for the relaxation time

Figure 2: Momenta for n = 0 and n = 1 Landau levels

We extend the work by Adams and Argyres in Ref.[1] and compute the scattering time for
weaker magnetic field for which n = 1 Landau levels also contribute. In Fig.2, the momenta in the
z direction at the Fermi level is denoted as ±P1 and ±P2, where the former mometa are at the n = 0
Landau level and the latter momenta are at the n = 1 Landau level.
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4. Solutions

We assume that the scattering time is independent of Py. At zero temperature, only four set of
states at the Fermi level contributes (labeled by I = 1,2,3,4) at the Fermi level contribute. From
Fermi’s golden rule, the energy is conserved before and after the transition so that the probability
can be written as

W (n,Py,Pz →,n′,P′
y,P

′
z) ≡ 2πδ (ε(n,Pz)− ε(n′,P′

z))W (n,Py,Pz →,n′,P′
y,P

′
z). (4.1)

Defining wIJ as

wIJ =
∫ dP′

y

2π
W (nI,Py,PI →,nJ,P′

y,PJ), (4.2)

and integrating over Pprimey,P′
z , we obtain from Eq.(2.11)

PI =
4

∑
J=1

wIJ(τIPI − τJPJ)
µ
|PJ|

. (I = 1,2,3,4) (4.3)

Since the probability distributions f and f0 are normalized to unity, their difference satisfies

∑
n

∫ d2P
(2π)2 δ f (n,Py,Pz) = 0, (4.4)

from which one obtains using Eq.(2.8)

τ1 + τ2 − τ3 − τ4 = 0. (4.5)

From a consideration of symmetries, one expects

wIJ = wJI (I,J = 1,2,3,4) (4.6)

w12 = w43, w13 = w42 (4.7)

Combining Eq.(4.3) and Eq.(4.5), we find that the solution is given as

τ1 = τ4 =
1
µ

(w23P1 +w12P2)P1P2

2(w12w13 +w1423)P1P2 +(w12 +w13)(w23P2
1 +w14P2

2 )
, (4.8)

τ2 = τ3 =
1
µ

(w12P1 +w14P2)P1P2

2(w12w13 +w14w23)P1P2 +(w12 +w13)(w23P2
1 +w14P2

2 )
. (4.9)

Note that the result by Argyres and Adams

τ1 = τ4 =
P1

2µw14
. (4.10)

for the strong magnetic field regime can be reproduced by artificially taking the limit w12,w13 → 0.

Starting from the strong magnetic field regime, let us consider what happens as we make the
magnetic field weaker. While the system is in the strong magnetic field regime, the scattering time
obeys Eq.(4.10) and makes a smooth change since w14 can depend on the magnetic field. After the
system is in the weaker magnetic field regime, the scattering time obeys Eq.(4.8).
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At the border of the strong and weaker magnetic field regimes where the n = 1 level just
touches the Fermi level, one finds P2 = 0 and w23 = ∞. In this case one finds that

τ1 = τ2 = 0. (4.11)

This means that as B becomes small and when n = 1 Landau level starts to contribute, a jump of
scattering time (and current) can occur, which could be an interesting sigmal for chiral magnetic
effect.

5. Summary and discussion

We studied the relaxation time for the chiral magnetic effect away from the strong magnetic
limit. We derived the coupled equations for the relaxation time starting from the Boltzmann equa-
tion in the relaxation time approximation for the weaker magnetic field regime where both of the
Landau levels with n = 0 and n = 1 contribute. Combining with the normalization condition for
the probability distribution function which also give another equation for the relaxation times, we
obtained solution to the coupled equation.

As a future plan, one needs to extend the present toy model calculation to the real calculation
for relativistic fermion in order to understand the physics of Weyl or Dirac semi-metals. Also, the
evaluation for the scattering time for a quantitative prediction of the conductivity is needed.
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