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1. Introduction

This paper is a follow-up and update of our previous paper [1, 2]. In the standard model, the
indirect CP violation parameter of the neutral kaon system εK is

εK ≡
A (KL→ ππ(I = 0))
A (KS→ ππ(I = 0))

= eiθ
√

2sinθ

(
Cε B̂KXSD +

ξ0√
2
+ξLD

)
+O(ωε

′)+O(ξ0Γ2/Γ1) , (1.1)

where Cε is a well-known coupling, and XSD is the short distance contribution from the box dia-
grams. Master formulas for Cε , XSD, ξ0, and ξLD are given in Ref. [1].

Since Lattice 2015, there have been major updates of lattice QCD inputs such as Vcb, B̂K , ξ0,
and ξ2. Hence, it is time to update the current status of εK .

2. Input parameter |Vcb|

Decay mode |Vcb| Ref.

B̄→ D∗`ν̄ 39.04(49)(53)(19) [3]

B̄→ D`ν̄ 40.7(10)(2) [4]

ex-combined 39.62(60) this paper

B̄→ Xc`ν̄ 42.00(64) [5]

Decay mode |Vub| Ref.

B̄→ π`ν̄ 3.70(14) [6, 7]

B̄→ Xu`ν̄ 4.45(16)(22) [8]

Decay mode |Vub/Vcb| Ref.

Λb→ Λc`ν̄ 0.083(4)(4) [9]

Table 1: Results of |Vcb| and |Vub|.
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Figure 1: |Vcb| versus |Vub|.

Let us begin with Vcb. In Table 1, we summarize updated results for |Vcb| and |Vub|. In Ref. [4],
DeTar has collected the results for the B̄→ D`ν̄ decay mode at non-zero recoil from both lattice
QCD [10, 11] and the experiments of Babar [12] and Belle [13] to make a combined fit of all of
them. This result corresponds to the green band in Fig. 1. We combine the results of Refs. [4]
(B̄→D`ν̄) and [3] (B̄→D∗`ν̄) to obtain the uncorrelated weighted average, which corresponds to
the “ex-combined” result in Table 1. This value is shown as an orange circle in Fig. 1. The black
cross represents results of inclusive |Vcb| and |Vub|. The inclusive results are about 3σ away from
those of the exclusive decays as well as the LHCb results of |Vub/Vcb| (the magenta band in Fig. 1).

3. Input parameter ξ0

There are two independent methods to determine ξ0 in lattice QCD: One is the indirect method,
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Input Method Value Ref.
ξ0 indirect −1.63(19)×10−4 [14]
ξ0 direct −0.57(49)×10−4 [15]
ξLD — (0±1.6)% [16]

(a) Long Distance Effects

Collaboration Value Ref.
FLAG-2016 0.7625(97) [17]
SWME-2014 0.7379(47)(365) [18]
RBC-UK-2016 0.7499(24)(150) [19]

(b) B̂K

Table 2: Input parameters: ξ0, ξLD and B̂K

and the other is the direct method. The parameter ξ0 is connected with ε ′/ε and ξ2 as follows,

ξ0 =
ImA0

ReA0
, ξ2 =

ImA2

ReA2
, Re

(
ε ′

ε

)
=

ω√
2|εK |

(ξ2−ξ0) . (3.1)

In the indirect method, we determine ξ0 from the experimental values of Re(ε ′/ε), εK , ω , and
the lattice QCD input ξ2 using Eq. (3.1). Recently, RBC-UKQCD reported new results for ξ2 in
Ref. [14]. The results for ξ0 using the indirect method are summarized in Table 2(a).

Recently, RBC-UKQCD also reported new lattice QCD results for ImA0 calculated using do-
main wall fermions [15]. Using the experimental value of ReA0, we can determine ξ0 directly from
ImA0. RBC-UKQCD also reported the S-wave π−π (I=0) scattering phase shift δ0 = 23.8(49)(12)
[15]. This value is 3.0σ lower than the conventional determination of δ0 in Refs. [20] (KPY-2011)
and [21, 22] (CGL-2001). The values for δ0 are summarized in Table 3. In Fig. 2, we show the re-
sults of KPY-2011. They used a singly subtracted Roy-like equation to do the interpolation around√

s = mK (kaon mass). Their fitting to the experimental data works well from the threshold to√
s = 800MeV.

Collaboration δ0 Ref.

RBC-UK-2016 23.8(49)(12)◦ [15]

KPY-2011 39.1(6)◦ [20]

CGL-2001 39.2(15)◦ [21, 22]

Table 3: Results of δ0
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Figure 2: Experimental results of δ0

In Fig. 3(a), we show the fitting results of both KPY-2011 and CGL-2001 as well as the RBC-
UKQCD result. There is essentially no difference between KPY-2011 and CGL-2001 in the region
near
√

s = mK . Here, we observe the 3.0σ gap between RBC-UKQCD and KPY-2011. In contrast,
in the case of δ2 (S-wave, I=2), there is no difference between RBC-UKQCD and KPY-2011 within
statistical uncertainty.
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Figure 3: S-wave π−π scattering phase shifts with I = 0 and I = 2.

Considering all aspects, we conclude that the direct calculation of ImA0 and ξ0 by RBC-
UKQCD in Ref. [15] may have unresolved issues. Hence, we use the indirect method to determine
ξ0 in this paper.

Regarding ξLD, the long distance effect in the dispersive part, there has been an on-going
attempt to calculate it on the lattice [23]. However, this attempt [24], at present, belongs to the
category of exploratory study rather than to that of precision measurement. Hence, we use the
rough estimate of ξLD in Ref. [23] in this paper, which is given in Table 2(a).

4. Input parameter B̂K

In Table 2(b), we present results for B̂K calculated in lattice QCD with N f = 2+ 1 flavors.
Here, FLAG-2016 represents the global average over the results of BMW-2011 [25], Laiho-2011
[26], RBC-UK-2016 [19], and SWME-2016 [27], which is reported in Ref. [17]. SWME-2014
represents the B̂K result reported in Ref. [18]. RBC-UK-2016 represents that reported in Ref. [19].

The results of SWME-2016 are obtained using fitting based on staggered chiral perturbation
theory (SChPT) in the infinite volume limit, while those of SWME-2014 are obtained using fitting
based on SChPT with finite volume corrections included at the NLO level. In this paper, we use
the FLAG-2016 result of B̂K .

5. Other input parameters

For the Wolfenstein parameters λ , ρ̄ , and η̄ , both CKMfitter and UTfit updated their results in
Refs. [28, 29], while the angle-only-fit has not been updated since 2015. The results are summa-
rized in Table 4(a).

For the QCD corrections ηcc, ηct , and ηtt , we use the same values as in Ref. [1], which are
given in Table 4(b). Other input parameters are the same as in Ref. [1] except for the charm quark
mass mc(mc), which are summarized in Table 4(c). For the charm quark mass, we use the HPQCD
results of mc(mc) reported in Ref. [30].
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CKMfitter UTfit AOF [31]
λ 0.22548(68) /[28] 0.22497(69) /[29] 0.2253(8) /[32]
ρ̄ 0.145(13) /[28] 0.153(13) /[29] 0.139(29) /[33]
η̄ 0.343(12) /[28] 0.343(11) /[29] 0.337(16) /[33]

(a) Wolfenstein parameters

Input Value Ref.
ηcc 1.72(27) [1]
ηtt 0.5765(65) [34]
ηct 0.496(47) [35]

(b) QCD corrections

Input Value Ref.
GF 1.1663787(6)×10−5 GeV−2 [32]
MW 80.385(15) GeV [32]

mc(mc) 1.2733(76) GeV [30]
mt(mt) 163.3(2.7) GeV [36]

θ 43.52(5)◦ [32]
mK0 497.614(24) MeV [32]
∆MK 3.484(6)×10−12 MeV [32]
FK 156.2(7) MeV [32]

(c) Other input parameters

Table 4: Input parameters

6. Results for εK with lattice QCD inputs

In Fig. 4, we show the results for εK evaluated directly from the standard model with the lattice
QCD inputs described in the previous sections. In Fig. 4(a), the blue curve represents the theoretical
evaluation of εK with the FLAG B̂K , AOF for the Wolfenstein parameters, and exclusive Vcb that
corresponds to ex-combined in Table 1. Here the red curve represents the experimental value of
εK . In Fig. 4(b), the blue curve represents the same as in 4(a) except for using the inclusive Vcb in
Table 1. Our preliminary results are, in units of 1.0×10−3,

|εK |= 1.69±0.17 for exclusive Vcb (lattice QCD) (6.1)

|εK |= 2.10±0.21 for inclusive Vcb (QCD sum rules) (6.2)

|εK |= 2.228±0.011 (experimental value) (6.3)

This indicates that there is 3.2σ tension in the exclusive Vcb channel (lattice QCD) and no tension
in the inclusive Vcb channel (heavy quark expansion; QCD sum rules).
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Figure 4: εK with exclusive Vcb (left) and inclusive Vcb (right). Here, we use the FLAG-2016 B̂K

and AOF for the Wolfenstein parameters. The red curve represents the experimental value of εK

and the blue curve the theoretical value evaluated directly from the standard model.
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