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We investigate the SU(2) gauge theory with the domain-wall fermions. Our previous simulations
with many flavors of the standard domain-wall fermions suffered from rather large residual mass
that obstruct the study in the small mass region. To improve the domain-wall fermion action,
we employ the link smearing technique that consists of the HYP smearing and the stout projec-
tion. On the previously generated configurations with the two flavors of the standard domain-wall
fermions, we confirm that the improved domain-wall fermion operator indeed reduce the resid-
ual mass to a factor of five. Dynamical simulations with two flavors of improved domain-wall
fermions are in progress.
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1. Introduction

The SU(2) gauge theory has recently been drawn much attention in search for a theory beyond
the standard model as a candidate of technicolor theory [1]. It is also interesting from a view
point of the spontaneous chiral symmetry breaking, since the symmetry breaking pattern of the
SU(2) gauge theory with fundamental fermions SU(2N f )→ Sp(2N f ) is different from that of QCD,
SU(N f )×SU(N f )→ SU(N f ), where N f is the number of flavors. To explore the chiral symmetry
on the lattice, it is important to employ the fermion formulation that retains the chiral symmetry
as exact as possible. Although the overlap fermions hold the exact chiral symmetry, because of
its large numerical cost, in this study we adopt the domain-wall fermions as dynamical degrees of
freedom and apply to numerical simulations with many flavors.

Our previous work with the standard domain-wall fermions [2, 3] showed that for N f = 2, 4,
the systems are characterized by spontaneously broken chiral symmetry as same as QCD, while
for N f = 8 such a feature seems to disappear in the massless limit. For more detailed analysis, in
particular to clarify the marginal case of N f = 6, it is necessary to explore the vicinity of the mass-
less limit. However, the rather large residual mass of the standard domain-wall fermion makes
such analysis difficult. To access the small fermion mass regime, it is necessary to employ an im-
proved domain-wall action such as the Möbius formulation [4], the optimal domain-wall operator
[5], or the link smearing [6, 7]. To reduce the residual mass, it is efficient to reduce the low-lying
eigenvalue density of the hermitian Wilson kernel in the domain-wall operator. Since this may be
achieved by employing the link smearing technique, in this work we apply the link smearing to the
standard form of the domain-wall fermion action.

In the next section we introduce the improved domain-wall fermion with the link smearing,
and in Section 3 we examine the residual mass on the gauge configurations previously generated
with the unimproved domain-wall fermions. Section 4 describes the dynamical simulations with
two flavors. The last section gives our conclusion and outlook.

2. Improved domain-wall fermion

The domain-wall fermion operator is represented as

DDW (x,s;y,s′) = DW (x,y)δs,s′ −
1
2
[
(1− γ5)δx,yδs+1,s′ +(1+ γ5)δx,yδs−1,s′ −2δx,yδs,s′

]
+m

[
PRδx,yδs,1δs′,Ls +PLδx,yδs,Lsδs′,1

]
, (2.1)

where m is fermion mass, PR,L = (1± γ5)/2, Ls the size of 5th dimension, and DW the standard
Wilson kernel with the negative mass −M0 (the domain-wall height),

DW [U ](x,y) = 4−M0 +κ ∑
µ

[
(1− γµ)Uµ(x)δx+µ̂,y(1− γµ)Uµ(x− µ̂)δx−µ̂,y

]
. (2.2)

As an improvement scheme, we adopt the HYP link smearing [6, 7] combined with the stout ex-
ponentiation of the smeared link [8]. The smeared domain-wall fermion action is obtained by
replacing Uµ → U smr

µ in Eq. (2.2). The link smearing consists of a scheme to incorporate the ex-
tended paths of links, Cµ(x), and a method to recast it into the gauge group, P[α;Cµ(x),Uµ(x)]. The
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HYP smearing scheme recursively sums over staples so that the links in the adjacent hypercubes to
the original link are incorporated [6],

V (1)
µ;νρ(x) = P[α3;C(1)

µ;νρ(x),Uµ(x)], C(1)
µ;νρ(x) =

1
2 ∑
±σ ̸=µ,ν ,ρ

Uσ (x)Uµ(x+ σ̂)U†
σ (x+ µ̂)

V (2)
µ;ν(x) = P[α2;C(2)

µ;ν(x),Uµ(x)], C(2)
µ;ν(x) =

1
4 ∑
±ρ ̸=µ ,ν

V (1)
ρ;µν(x)V

(1)
µ;νρ(x+ ρ̂)V (1)†

ρ;µν(x+ µ̂)

Vµ(x) = P[α1;C(3)
µ (x),Uµ(x)], C(3)

µ (x) =
1
6 ∑
±ν ̸=µ

V (2)
ν ;µ(x)V

(2)
µ;ν(x+ ν̂)V (2)†

ν ;µ (x+ µ̂). (2.3)

As the projection method, the stout projection [8]

P[α;Cµ(x),Uµ(x)] = exp
(
α[Cµ(x)U†

µ(x)]AT
)

Uµ(x) (2.4)

is employed. For SU(2) matrix Q, the Cayley-Hamilton theorem reads Q2 − c0I = 0 where c0 =

detQ = 1
2 trQ2 ≥ 0 and thus

eiQ = f0(c0)+ f1(c0)Q (2.5)

holds, where f j’s are the functions of c0. The analytic form of the HMC force is derived with a little
modification to the SU(3) case. The link smearing is recursively applicable. We recursively apply
the smearing procedure Eq. (2.3) twice, and in the following, this improved domain-wall fermion
is denoted by the stout-HYP(2) domain-wall or the HYP-DW fermion in short.

3. Effect of link smearing

We first examine the effect of improvement for the valence domain-wall fermions on the con-
figuration ensembles that were previously generated with the Iwasaki gauge action and two flavors
of the standard domain-wall fermions [2]. These configurations were generated on a 163 ×32 with
M0 = 1.6, Ls = 16, and at several values of β and fermion mass m. The valence fermion is the
stout-HYP(2) domain-wall action with Ls = 16 and mval = 0.010. The smearing parameters are set
to α1 = 0.95, α2 = 0.76, and α3 = 0.38 [9].

Figure 1 shows the M0 dependence of the residual mass for the HYP-DW action on the ensem-
bles generated at (β ,m) = (0.85,0.050) and (0.90,0.050). In each ensemble, 80 configurations are
used for the measurements. The residual mass is indeed reduced by about factor 5 compared to the
unimproved domain-wall fermions: mres ≃ 0.030 (at β = 0.85), and mres ≃ 0.013 (β = 0.90). At
both the values of β , the residual mass takes the minimum value around M0 = 1.6 with mild M0

dependence around this value.
The residual mass is related to the low-lying eigenvalue density of the hermitian Wilson kernel

HW = γ5DW [10]. Figure 2 displays the eigenvalue distributions of the Wilson kernel with M0 = 1.6
with and without the link smearing, respectively. The link smearing indeed reduces the low-lying
eigenvalue density of HW by about factor 5.

4. Dynamical simulations

Motivated by the results in the last section, we perform dynamical simulations with two flavors
of the stout-HYP(2) smeared domain-wall fermions on a 163 × 32 lattice. We adopt the Iwasaki
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Figure 1: The M0 dependence of the residual mass for the valence stout-HYP(2) DW fermion operators on
N f = 2 configurations generated with the standard DW fermions.
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Figure 2: Eigenvalue distribution on 163 × 32 lattice with β = 0.85, N f = 2, msea = 0.05. Left and right
panels display the eigenvalue distributions of the Wilson kernel with and without the link smearing, respec-
tively.

gauge action and set Ls = 16, M0 = 1.6, and the smearing parameters α1 = 0.95, α2 = 0.76, and
α3 = 0.38, as same as the previous section. The gauge configurations are generated at β = 0.90
with five values of dynamical fermion masses, msea = 0.002, 0.005, 0.010, 0.020, and 0.050. The
standard hybrid Monte Carlo algorithm is applied with unit trajectory length. Currently O(1000)
trajectories are compiled at each parameter set.

We first measure the Wilson loops at every five trajectories and extract the static fermion
potential. The left panel of Fig. 3 shows the fermion mass dependence of the lattice scale set by the
hadronic radius r0 by setting r0 = 0.49 fm. The result shows mild dependence of r0 on the fermion
mass m, and the lattice spacing a smaller than the corresponding result of the standard domain-wall
fermions. The right panel of Fig. 3 displays the residual mass mres of the domain-wall fermions.
The residual mass is measured at the valence mass equal to the sea fermion mass. As expected, the
values of mres are significantly reduced by the link smearing.

On each dynamical ensemble, the meson mass is measured for several valence fermion masses.
We first measure the meson correlators with local operators at the source and sink. Figure 4 shows
the valence fermion mass dependence of the squared pseudoscalar meson mass mPS on ensembles
of msea = 0.010 and 0.050. The valence fermion mass includes the residual mass measured at each
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Figure 3: The results of dynamical simulation with two flavors of stout-HYP(2) domain-wall fermions on
163 ×32 at β = 0.90. The left panel displays the lattice scale set by r0 from the static potential. In addition
to the value at each bare dynamical fermion mass, we include the result of the standard domain-wall fermion
simulation. The right panel shows the residual masses measured at mval = msea.
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Figure 4: The results of pseudoscalar meson spectrum on dynamical configurations with two flavors of
stout-HYP(2) domain-wall fermions on 163 × 32 at β = 0.90. On msea = 0.010 and 0.050 ensembles, m2

PS
is plotted against the valence fermion masses including the residual mass, mq = mval +mres.

value. Both the results show a linear dependence of the m2
PS on the fermion mass. While the result

of msea = 0.050 exhibits small intercept at the massless limit, it disappears on the msea = 0.010
ensemble. More detailed analysis is in progress.

5. Conclusion and outlook

To explore the small fermion mass region, we investigated the domain-wall fermion improved
by the link smearing. Applying the stout-HYP smearing twice to the link variable in the fermion
operator, we observed that the residual mass is significantly reduced compared to the unimproved
domain-wall operator. Application to the N f > 2 cases is underway. It is also straightforward to
apply to the adjoint domain-wall fermion [3].

The spectrum result of dynamical simulation with two flavors indicates that by setting the
fermion mass sufficiently small the ε-regime simulation, in which the pion Compton wavelength
is much larger than the system size, may be possible with e.g. adopting L = 8 lattice. Comparison
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of the eigenvalue spectrum to the prediction of the random matrix theory is important [11]. Such a
study is also in progress.

Acknowledgment

Numerical simulations were performed on Hitachi SR16000 and IBM Blue Gene/Q at KEK
under a support of its Large-scale Simulation Program (Nos. 14/15-22, 15/16-14), and φ computer
system at Kobayashi-Maskawa Institute, Nagoya University. The gauge ensembles used in this
work were generated in collaboration with K.-i. Nagai. We also thank the Japan Lattice Data Grid
which is a grid file system constructed on a virtual private network HEPnet-J/sc on SINET provided
by National Institute of Informatics for efficient data transfer. The simulation codes used in this
work is based on the Bridge++ code set [12]. This work is supported in part by the Grand-in-Aid
for Scientific Research of Japan (Nos.22224003, 22740183, 25400284, 15H03669).

References

[1] For reviews, J. Kuti, PoS LATTICE 2013 (2014) 004; E. T. Neil, PoS LATTICE 2011 (2011) 009
[arXiv:1205.4706 [hep-lat]]; J. Giedt, PoS LATTICE 2012 (2012) 006.

[2] H. Matsufuru, K. i. Nagai and N. Yamada, PoS LATTICE 2014, 241 (2014);

[3] H. Matsufuru, K. I. Nagai and N. Yamada, PoS LATTICE 2015 (2016) 054.

[4] R. C. Brower, H. Neff and K. Orginos, Nucl. Phys. Proc. Suppl. 140 (2005) 686
doi:10.1016/j.nuclphysbps.2004.11.180 [hep-lat/0409118].

[5] T. W. Chiu, Phys. Rev. Lett. 90 (2003) 071601 doi:10.1103/PhysRevLett.90.071601
[hep-lat/0209153].

[6] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64 (2001) 034504 doi:10.1103/PhysRevD.64.034504
[hep-lat/0103029].

[7] A. Hasenfratz, R. Hoffmann and S. Schaefer, JHEP 0705 (2007) 029
doi:10.1088/1126-6708/2007/05/029 [hep-lat/0702028].

[8] C. Morningstar and M. J. Peardon, Phys. Rev. D 69 (2004) 054501 doi:10.1103/PhysRevD.69.054501
[hep-lat/0311018].

[9] S. Durr et al., JHEP 1108 (2011) 148 [arXiv:1011.2711 [hep-lat]].

[10] R. Narayanan and H. Neuberger, Nucl. Phys. B 412 (1994) 574 doi:10.1016/0550-3213(94)90393-X
[hep-lat/9307006].

[11] P. H. Damgaard and S. M. Nishigaki, Phys. Rev. D 63 (2001) 045012 [hep-th/0006111].

[12] S. Ueda et al., PoS LATTICE 2013, 412 (2014); J. Phys. Conf. Ser. 523, 012046 (2014).

6


