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1. Introduction

A serious problem which limits the attainable precision in lattice QCD computations of hadronic
observables is the exponential suppression of the signal-to-noise ratio in Euclidean time. It is
therefore important to reduce the coefficient of this deterioration as much as possible.

One first step is to find improved interpolating operators, which allow to decrease statistical and
systematic errors in the extraction of the hadron spectrum, form factors and matrix elements. For
this purpose, we introduce extended interpolating operators built from 3D fermions. These are well
behaved under renormalisation and improve the short distance behaviour of two point functions. The
octet and decuplet baryonic interpolating operators have been classified according to the irreducible
representations of the cubic group [1] [2]. This classification has the advantage of being exhaustive
by construction.

In this proceedings contribution we first review the construction of the basis of baryon operators,
before introducing the new source operators. They are then compared to the traditional Jacobi
smearing.

2. Classification of baryonic operators

Baryons are bound states of three valence quarks. The interpolating operators B will need to
have a well defined set of quantum numbers such that the corresponding Hilbert space operator
B̂ projects onto the state we are interested in. On the lattice, rotational symmetry breaks down
and is replaced by the cubic group SO(3,Z) whose elements are the matrices of SO(3) with integer
entries. In order to correctly classify the operators, we will use the spin covering group Spin(3,Z)
of SO(3,Z). In fact the Spin(3) group is isomorphic to SU(2) and allows us to work with the
continuum Weyl spinor notation on the lattice.

A generic gauge invariant three-quark operator will have the form

B(x) = ua
α(x)d

b
β
(x)sc

γ(x) tαβγ
εabc, (2.1)

where u,d,s are the quark fields, which are in the fundamental representation of SU(3)c. Further-
more, despite the notation we use, the fields have a definite but not necessarily different flavour.
The tensor tαβγ depends on the SO(3,Z) representation the baryon falls in, εabc is the only allowed
invariant colour tensor. Greek indices α,β , . . . are Dirac indices while the Latin ones (a,b, . . .)
represent colour.

In order to classify the baryonic operators according to the irreducible representations of flavour
and the rotation group on the lattice, we need to classify the tensors tαβγ introduced above according
to the irreducible representations of the spin covering Spin(3,Z) of the cubic group SO(3,Z). For
spin 1

2 and spin 3
2 baryons, it can be proven [3] that there is a one to one correspondence between

the corresponding Spin(3,Z) representations on the lattice and the continuum ones. We thus use the
continuum notation of dotted and undotted Weyl spinors in the following.

We now discuss the operators that have been actually used in the simulations. Consider the case
in which two flavours are equal, namely for spin s = 1

2 the case of the nucleon. It is possible to show
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that there are two proton operators p̂ and p̃ in the
(1

2 ,0
)

representation

p̂(
1
2 ,0)

1
2 ,

1
2

=
1√
2
(u1d2−u2d1)u1 p̂(

1
2 ,0)

1
2 ,−

1
2
=

1√
2
(u1d2−u2d1)u2

p̃(
1
2 ,0)

1
2 ,

1
2

=
1√
2
(u1̇d2̇−u2̇d1̇)u1 p̃(

1
2 ,0)

1
2 ,−

1
2
=

1√
2
(u1̇d2̇−u2̇d1̇)u2 (2.2)

and one in the
(1

2 ,1
)

representation

p(
1
2 ,1)

1
2 ,

1
2

=
1√
14
{(u1̇d2̇ +u2̇d1̇)u1−2u1̇d1̇u2 +2(u1̇d2−u2̇d1)u1̇}

p(
1
2 ,1)

1
2 ,−

1
2
=− 1√

14
{(u1̇d2̇ +u2̇d1̇)u2−2u2̇d2̇u1 +2(u2̇d1−u1̇d2)u2̇}. (2.3)

In the case of three equal flavours, namely the case of the Ω baryon, there are two s = 3
2 decouplet

operators

Ω
( 1

2 ,1)
3
2 ,

3
2

= s1̇s1̇s1 Ω
( 1

2 ,1)
3
2 ,

1
2

=
1√
3
{s1̇s1̇s2 + s1̇s2̇s1 + s2̇s1̇s1}

Ω
( 3

2 ,0)
3
2 ,

3
2

= s1s1s1 Ω
( 3

2 ,0)
3
2 ,

1
2

=
1√
3
{s1s1s2 + s1s2s1 + s2s1s1} ,

(2.4)

where we have reported only the spin up components. In order to have operators with definite
transformation properties under the action of parity P̂ , we need to consider

B±(a,b)⊕(b,a) = B(a,b)∓B(b,a) , (2.5)

where ± indicates the parity eigenvalue and (a,b) the irreducible representation.

3. Extended operators

The 3D extended operators are built from quenched three dimensional fermions fields coupled
via pseudoscalar bilinears with ordinary four dimensional fermions in the bulk. These 3D fields live
on a time-slice and their propagator can be derived from the action

S3D = a3
∑
x

ϕ̄(x)Dϕ(x), D =
1
2

3

∑
i=1
{γi(∇

∗
i +∇i)−a∇

∗
i ∇i}+m3D (3.1)

where D is the three dimensional Wilson-Dirac operator with a mass term m3D. The 3D fermionic
fields ϕ ,ϕ̄ are spin 1/2 spinors with canonical dimension 1 and represent a flavour SU(3) triplet
ϕ̄ =

(
ū, d̄, s̄

)
which corresponds to the four dimensional triplet ψ̄ =

(
ū, d̄, s̄

)
.

These fields are used to build an interpolating operator B with the same spin and flavour
structure of the corresponding 4D local operators B(x) which we have defined above. This new
operator is coupled with pseudoscalar bilinears of the form ϕ̄γ5ψ . Computations using baryonic two
point functions have in fact shown that the signal obtained with the pseudoscalar bilinears has much
lower noise contributions than the one given by the scalar bilinears. The coupling of B with bilinears
allows the quenched three dimensional fermions to propagate in time via the four dimensional ones.
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Figure 1: Left: Norm square of the 3D source |Ψ|2 along one axis as a function of distance for
the extended operators. For κ3D→ κcrit

3D the 3D fields are much more spread out. Right: Effective
mass of the nucleon for various values of κ3D. The larger κ3D, the stronger the excited states are
suppressed.

It is now possible to join together the pieces and define the 3D extended operators

O(t,w) = a9
∑

x,y,z
B(w)ϕ̄γ5ψ(t,x)ϕ̄γ5ψ(t,y)ϕ̄γ5ψ(t,z). (3.2)

There are as many bilinear operators as there are quarks in the interpolating operator B, for instance
if we were to study mesons there would have been only two bilinears instead of three. Due to the
fact that the 3D fermion action is symmetric under C,P and Γ symmetry1 it can be shown that the
3D extended operators are well behaved under renormalisation.

From the operator of Eq. (3.2), the smoothed baryonic two point functions are constructed in
the usual way from products of quark propagators. For the 3D extended operators, this amounts to
replacing each 4D propagator in the formula for the point sources with the product

S(t,w, t ′,w′) = a6
∑
x,x′

S3D(w,x′)γ5 S4D(t,x′; t ′,x)γ5 S3D(x;w′) . (3.3)

It can be shown from dimensional considerations, that the 3D extended operator’s two point function
is much more regular at short distances than the one where local operators are used. Indeed the
degree of divergence in time will be at most logarithmic, while for the local operators it is a
polynomial of degree six.

4. Numerical tests

The new operators have been numerically implemented and compared to point sources and
Jacobi smearing. The lattice simulations were performed on the CLS N f = 2+1 gauge configurations
[4] that adopt the open boundary conditions in time [5]. In the present exploratory study we have
a flavour SU(3) symmetric 96× 323 ensemble with Mπ = MK = 420 MeV and a lattice spacing
a = 0.086 fm [6].

4.1 Shape of the source

For this first test, we use the same 3D mass for all fermion fields, defining analogously to the
4D case m3D = 1

2

(
1

κ3D
−6

)
. The norm of the wave function as a function of the separation from the

1ϕ → eiαΓϕ and Uµ (x)→Uµ (x) where Γ = iγ0γ5

3
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Figure 2: The norm of the 3D source (red) and the Jacobi smeared source (blue) as a function of
distance r for the extended operators. The parameters of the Jacobi smearing were tuned to match
the average radii 〈r2〉.

source is shown for select values of κ3D in Fig. 1. As expected, a smaller 3D mass corresponds to a
source which is more spread out, with the square of the effective mass being proportional to the 3D
mass in a wide range.

For our value of the physical parameters, a critical value of κ3D can be found, at which the
effective mass of the three-dimensional analogue to the pion goes to zero. A linear fit to this
behavior leads to an estimate of κcrit

3D = 0.208±0.004 for this ensemble. For the rest of the study,
we employed κ3D = 0.185, which we have chosen to match standard parameters of Jacobi sources
as explained below.

In the right hand plot of Fig. 1, the effect of the extension of the source on the nucleon two-point
function is shown. The smaller m3D, i.e. the wider the source, the stronger is the suppression of the
excited state contribution at small distances. Nevertheless, the plateau region from which the ground
state mass is extracted, starts roughly at the same time separation.

4.2 Comparison to Jacobi smearing

To test the effectiveness of the 3D extended operator technique relative to the existing ones, we
have computed the baryonic two point functions with standard point sources and Jacobi smeared
sources. The free parameters of the Jacobi smearing are the number of terms included into the sum
Nsm and κsm which regulates how strongly the source is spread out [7]

Ψsm =
Nsm

∑
n=0

(κsm∆)n
Ψpnt . (4.1)

The parameters have been chosen to be Nsm = 50 and κsm = 0.21, such that the square of the
source radius matches to the one of the 3D fermions. The Jacobi smeared source Ψsm behaves very
differently from the 3D one as can be seen in Fig. 2. The latter has the typical exponential decay
in the long distance region, whereas the Jacobi source has a the shape similar to a Gaussian. The
different shapes of these two source types give the opportunity to construct operators that differ
significantly from one another. Therefore they might be well suited to construct an enlarged basis to
be used with variational methods.

Finally, Figs. 3 and 4 show the effective masses of the nucleon and the Omega, respectively, as
a function of source sink separation. For both baryons, the 3D extended operators have an excellent
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Figure 3: Comparison between the effective masses of the nucleon calculated for the 3D extended
operators (red) and the Jacobi smearing (blue) and point sources (orange) for the three different
nucleon operators of eqs.(2.2) and (2.3). The 3D extended operators have a better suppression of the
contributions from the excited states and also the short distance behaviour is much more regular.
While similar from about x0 = 4a on, the Jacobi smeared sources have a stronger coupling to the
excited states at smaller distance.
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Figure 4: The comparison between the effective masses of the Omega calculated for the 3D extended
operators (red) and the Jacobi smearing (blue) and point sources (orange). The effective mass is
extracted from the two point functions built from the two different Omega operators of eq.(2.4). It is
possible to draw similar conclusions to the nucleon case.
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short distance behaviour compared to the other two methods. On the other hand, the plateaux for
both, the 3D extended operators and Jacobi smearing, are reached at about the same time and have
very similar statistical noise.

5. Summary

The 3D fermions introduced in this poster are an interesting alternative to the more standard
Jacobi smearing and look promising in increasing the precision in the extraction of the baryon
spectrum. In the numerical application, the 3D propagators can be computed with standard iterative
techniques for sparse systems. This can make them a computationally efficient choice for the
construction of wide sources.

It can be shown that these operators improve the short distance behaviour of two point functions
and that they are well behaved under renormalisation. The 3D extended operators therefore allow
to have theoretical control while taking the continuum limit. The disappearance of short distance
divergences might improve the study of excited states, where a strong signal is needed at short
Euclidean times. However a satisfactory understanding of the interplay between the short distance
behaviour and excited states can only be achieved through a scaling study, one of the next steps we
are planning.

The previous properties together with their difference from the Jacobi smeared sources and the
freedom given by the tunable m3D mass parameter make the 3D extended operators a potentially very
interesting addition to the basis used in the GEVP and therefore promise to help in the extraction of
the spectrum.

We thank Martin Lüscher for many discussions on the subject.
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