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Further Study of BRST-Symmetry Breaking on the Lattice
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We evaluate the so-called Bose-ghost propagator Q(p2) for SU(2) gauge theory in minimal Lan-
dau gauge, considering lattice volumes up to 1204 and physical lattice extents up to 13.5 f m. In
particular, we investigate discretization effects, as well as the infinite-volume and continuum lim-
its. We recall that a nonzero value for this quantity provides direct evidence of BRST-symmetry
breaking, related to the restriction of the functional measure to the first Gribov region. Our re-
sults show that the prediction (from cluster decomposition) for Q(p2) in terms of gluon and ghost
propagators is better satisfied as the continuum limit is approached.
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Lattice BRST-Symmetry Breaking Attilio Cucchieri

1. BRST-Symmetry Breaking

The minimal Landau gauge in Yang-Mills theories [1] is obtained by restricting the functional
integral to the set of transverse gauge configurations for which the Faddeev-Popov (FP) matrix
M is non-negative, the so-called first Gribov region Ω. On the lattice, this gauge condition is
imposed by considering a minimization procedure. On the contrary, in the Gribov-Zwanziger (GZ)
approach in the continuum [2], this restriction is forced by adding a nonlocal horizon-function term
γ4Sh to the usual (Landau-gauge) action. The resulting (nonlocal) GZ action may be localized by
introducing the auxiliary fields φab

µ (x) and ωcd
ν (y), yielding SGZ = SYM + Sgf + Saux + Sγ. Here,

SYM is the usual four-dimensional Yang-Mills action, Sgf is the covariant-gauge-fixing term, Saux is
defined as

Saux =
∫

d4x
[
φ

ac
µ ∂ν

(
Dab

ν φ
bc
µ

)
−ω

ac
µ ∂ν

(
Dab

ν ω
bc
µ

)
− g0

(
∂νω

ac
µ
)

f abd Dbe
ν η

e
φ

dc
µ

]
and is necessary to localize the horizon function, and Sγ, given by

Sγ =
∫

d4x
[
γ

2Dab
µ

(
φ

ab
µ +φ

ab
µ

)
−4
(
N2

c −1
)

γ
4
]
,

allows one to fix the γ parameter through the so-called horizon condition. Also, one can define
[3] for these fields a nilpotent BRST transformation s that is a simple extension of the usual (per-
turbative) BRST transformation leaving SYM + Sgf invariant. However, in the GZ case, the BRST
symmetry s is broken by terms proportional to a power of the Gribov parameter γ. Since a nonzero
value of γ is related to the restriction of the functional integration to Ω, it is somewhat natural to
expect a breaking of the (extended) BRST symmetry s, as a direct consequence of the nonpertur-
bative gauge-fixing.1 More precisely —as nicely explained in Ref. [7]— an infinitesimal gauge
transformation is formally equivalent to a (perturbative) BRST transformation. Since the region Ω

is free of infinitesimal gauge copies, applying s to a configuration in Ω should result in a configura-
tion outside Ω. The breaking of the BRST symmetry in minimal Landau gauge is then inevitable,
since the functional integration is limited to the region Ω. This interpretation is supported by the
introduction [6] of a nilpotent nonperturbative BRST transformation sγ that leaves the local GZ ac-
tion invariant. The new symmetry is a simple modification of the extended BRST transformation s,
by adding (for some of the fields) a nonlocal term proportional to a power of the Gribov parameter
γ.

2. The Bose-Ghost Propagator

As implied above, the Gribov parameter γ is not introduced explicitly on the lattice, since
in this case the restriction of gauge-configuration space to the region Ω is achieved by numerical
minimization. Nevertheless, the breaking of the BRST symmetry s induced by the GZ action may
be investigated by the lattice computation of suitable observables, such as the so-called Bose-ghost
propagator

Qabcd
µν (x,y) = 〈s(φ

ab
µ (x)ω

cd
ν (y))〉 = 〈ωab

µ (x)ω
cd
ν (y) + φ

ab
µ (x)φ

cd
ν (y)〉 .

1This issue has been investigated in several works (see e.g. [4, 5, 6, 7] and references therein).
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Since this quantity is BRST-exact with respect to the (extended) BRST transformation s, it should
be zero for a BRST-invariant theory, but it does not necessarily vanish if the symmetry s is bro-
ken. On the lattice, however, one does not have direct access to the auxiliary fields (φac

µ ,φac
µ ) and

(ωac
µ ,ωac

µ ). Nevertheless, these fields enter the continuum action at most quadratically and they can
be integrated out exactly, giving for the Bose-ghost propagator an expression that is suitable for
lattice simulations. This yields

Qabcd
µν (x− y) = γ

4
〈

Rab
µ (x)Rcd

ν (y)
〉
, (2.1)

where

Rac
µ (x) =

∫
d4z(M −1)ae(x,z)Bec

µ (z) (2.2)

and Bec
µ (z) is given by the covariant derivative Dec

µ (z). One can also note that, at the classical level,
the total derivatives ∂µ(φ

aa
µ +φ

aa
µ ) in the action Sγ can be neglected [3, 4]. In this case the expression

for Bec
µ (z) simplifies to

Bec
µ (z) = g0 f ebc Ab

µ(z) , (2.3)

as in Ref. [4]. Let us stress that, in both cases, the expression for Qabcd
µν (x− y) in Eq. (2.1) depends

only on the gauge field Ab
µ(z) and can be evaluated on the lattice.

3. Numerical Simulations and Results

The first numerical evaluation of the Bose-ghost propagator in minimal Landau gauge was
presented —for the SU(2) case in four space-time dimensions— in Refs. [8, 9]. In particular, we
evaluated the scalar function Q(k2) defined [for the SU(Nc) gauge group] through the relation

Qac(k) ≡ Qabcb
µµ (k) ≡ δ

acNc Pµµ(k)Q(k2) ,

where Pµν(k) is the usual transverse projector and k is the wave vector with components kµ =

0,1, . . . ,N− 1, for a lattice of N points per directions. The lattice momentum p2(k) is obtained
using the improved definition (see Ref. [8]). This calculation has been recently extended in Ref.
[10], where we have investigated the approach to the infinite-volume and continuum limits by
considering four different values of the lattice coupling β and different lattice volumes V = N4,
with physical volumes ranging from about (3.366 f m)4 to (13.462 f m)4. We find no significant
finite-volume effects in the data. As for discretization effects, we observe small such effects for
the coarser lattices, especially in the IR region. We also tested three different discretizations2 for
the sources Bbc

µ (x), used in the inversion of the FP matrix M , and find that the data are fairly
independent of the chosen lattice discretization of these sources.

Our results concerning the BRST symmetry-breaking and the form of the Bose-ghost propa-
gator are similar to the previous analysis [8, 9], i.e. we find a 1/p6 behavior at large momenta and
a double-pole singularity at small momenta,3 in agreement with the one-loop analysis carried out

2See Eqs. (30), (31) and (32) in Ref. [10].
3As proven in Ref. [10], the Fourier transform of the quantity Rac

µ (x), defined in Eq. (2.2) above, is trivially equal to
0 at zero momentum, i.e. ∑x Rac

µ (x) = 0 . Thus, one needs to consider sufficiently large lattice volumes, in order to have
the IR behavior of the Bose-ghost propagator under control.
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in Ref. [11]. These behaviors can be clearly seen in Fig. 1, where we fit the data for the Bose-ghost
propagator Q(p2) using the fitting function

f (p2) =
c
p4

p2 + s
p4 + u2 p2 + t2 , (3.1)

which can be related [see Eq. (3.2) below] to an IR-free FP ghost propagator G(p2) ∼ 1/p2 in
combination with a massive gluon propagator D(p2).
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Figure 1: The Bose-ghost propagator Q(p2) as a function of the (improved) lattice momentum squared p2.
Here we used as sources Bec

µ (z) the formula reported in Eq. (32) of Ref. [10]. We plot data for β2 ≈ 2.44,
V = 964 ( ) and β3 ≈ 2.51, V = 1204 ( ), after applying a matching procedure [12] to the former set of data.
We also plot, for V = 1204, a fit using the fitting function (3.1). Note the logarithmic scale on both axes.

In Figs. 2 and 3 we compare the Bose-ghost propagator Q(p2) to the product g2
0 G2(p2)D(p2),

where g0 is the bare coupling constant. To this end, the data of the Bose-ghost propagator have been
rescaled in order to agree with the data of the product g2

0 G2(p2)D(p2) at the largest momentum.4

This comparison is based on the result

Q(p2) ∼ g2
0 G2(p2)D(p2) , (3.2)

obtained in Ref. [4] using a cluster decomposition. Even though there is a clear discrepancy be-
tween these two quantities we find that this discordance seems to decrease when the continuum
limit is considered.

4This is equivalent to imposing a given renormalization condition for the propagators at the largest momentum.
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Figure 2: The Bose-ghost propagator Q(p2) ( ) and the product g2
0 G2(p2)D(p2) ( ) as a function of the

(improved) lattice momentum squared p2 for the lattice volume V = 644 at β0. Here we used as sources
Bec

µ (z) the formula reported in Eq. (32) of Ref. [10]. Note the logarithmic scale on both axes.
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Figure 3: The Bose-ghost propagator Q(p2) ( ) and the product g2
0 G2(p2)D(p2) ( ) as a function of the

(improved) lattice momentum squared p2 for the lattice volume V = 1204 at β3 ≈ 2.51. Here we used as
sources Bec

µ (z) the formula reported in Eq. (32) of Ref. [10]. Note the logarithmic scale on both axes.
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