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Figure 1: Histogram of the Polyakov loop history for β = 6.055.

1. Introduction

We study of the colour fields distributions inside the flux tubes formed by Polyakov loops in the
static QQ̄, QQ and QG systems. We address how the flux tube evolves with the distance between
quarks and when the temperature increase beyond the deconfinement temperature. In section 2, we
describe the lattice formulation. We briefly review the Polyakov loop for these systems and show
how to compute the colour fields as well as the Lagrangian distribution. In section 3, the numerical
results are shown. Finally, we conclude in section 4.

2. Computation of the chromo-fields in the flux tube

The central observables that govern the event in the flux tube can be extracted from the corre-
lation of a plaquette, �µν , with the Polyakov loops, L. To reduce the fluctuations of the O�µν(x),
we measure the following quantity, [1],

fµν(r,x) =
β

a4

[〈
O�µν(x)

〉
−
〈
O�µν(xR)

〉
〈O〉

]
, (2.1)

β T/Tc a
√

σ # config.

5.96 0.845 0.235023 5990

6.0534 0.986 0.201444 5990/5110*

6.13931 1.127 0.176266 5990

6.29225 1.408 0.141013 5990

6.4249 1.690 0.117513 5990

Table 1: Lattice simulations for a 483× 8 volume. We denote with an ∗ the number of remaining
configurations after we remove the configurations in the other phase.
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R = 6 R = 8 R = 10 R = 12(a) β = 5.96, T = 0.845Tc.
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Figure 2: The results for the QQ̄ system at T < Tc. The results in the left column correspond to
the fields along the sources (plane XY) and the right column to the results in the middle of the flux
tube (plane XZ). R is the distance between the sources in lattice units.

where xR is the reference point placed far from the sources, and

O = L(0)L†(r) for the QQ̄ system ,

O = L(0)L(r) for the QQ system ,

O =
(
L(0)L†(0)−1

)
L(r) for the Qg system . (2.2)

Moreover x denotes the distance of the plaquette from the line connecting sources, r is the separa-
tion between the sources, L(r) = 1

3 TrΠNt
t=1U4(r, t) and Nt is the number of time slices of the lattice.

We also use the periodicity in the time direction for the Polyakov loops, �µν(x)= 1
Nt

∑
Nt
t=1�µν(x, t),

to average the plaquette over the time direction.
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Figure 3: The results for the QQ̄ system atr T > Tc. The results in the left column correspond to
the fields along the sources (plane XY) and the right column to the results in the middle of the flux
tube (plane XZ). R is the distance between the sources in lattice units.

Therefore, using the plaquette orientation (µ,ν) = (2,3),(1,3),(1,2), (1,4),(2,4),(3,4), we
can relate the six components in Eq. (2.1) to the components of the chromoelectric and chromo-
magnetic fields,

fµν →
1
2
(
−
〈
B2

x
〉
,−
〈
B2

y
〉
,−
〈
B2

z
〉
,
〈
E2

x
〉
,
〈
E2

y
〉
,
〈
E2

z
〉)

, (2.3)

and also calculate the total action (Lagrangian) density, 〈L 〉= 1
2

(〈
E2
〉
−
〈
B2
〉)

.
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Figure 4: The results for the QQ system. The results in the left column correspond to the fields
along the sources (plane XY) and the right column to the results in the middle of the flux tube
(plane XZ). R is the distance between the sources in lattice units.

In order to improve the signal over noise ratio in the QQ̄ and QQ systems, we use the multihit
technique, [2, 3], replacing each temporal link by it’s thermal average, and the extended multihit
technique, [4].

The extended multihit consists in replacing each temporal link by it’s thermal average with the
first N neighbours fixed. rather than just taking the thermal average of a temporal link with the first

4
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Figure 5: The results in the left correspnd to the single gluon system, and in the right to the QG
system, both for β = 6.4249, T = 1.690Tc.

neighbours. We apply the heat-bath algorithm to all the links inside, averaging the central link,

U4→ Ū4 =

∫
[DU4]ΩU4 eβ ∑µ,s Tr[Uµ (s)F†(s)]∫
[DU4]Ω eβ ∑µ,s Tr[Uµ (s)F†(s)]

. (2.4)

By using N = 2 we are able to greatly improve the signal, when compared with the error reduction
achieved with the simple multihit. Of course, this technique is more computer intensive than simple
multihit, while being simpler to implement than multilevel. The only restriction is R > 2N for this
technique to be valid.

Moreover, just below the phase transition, we need to make sure that we don’t have contam-
inated configurations as already mentioned in [5]. By plotting the histogram of Polyakov loop
history for β = 6.055, Fig. 1, we are able to identify a second peak, and thus we remove all the
configurations that lie on the second peak. Therefore, in Table 1 the value with asterisk corresponds
to the configurations after removing these contaminated configurations.

3. Results

In this section, we present the results for different β values suing a fixed lattice volume of
483× 8, Table 1. The lattice spacing was computed using the parametrization from Ref. [6] in
units of the string tension at zero temperature. All our computations are fully performed in NVIDIA
GPUs using our CUDA codes.

The two charges, Q Q̄ or G, are located at (0,−R/2,0) and (0,R/2,0) for R= 4,6,8,10 and 12
lattice spacing units.

In Figs. 2 and 3, we show the results for the QQ̄ system. As expected the strength of the fields
decrease with the temperature. Also, in the confined phase the width in the middle of the flux
tube increases with the distance between the sources, while above the phase transition the width
decreases with the distance.

In Fig. 4, we show the results for the QQ system at T > Tc (below Tc the Polyakov loop of
non colour-singlet systems vanish). It is remarkable that these results are identical, modulo statistic
errors, to the ones of the QQ̄ system. We interpret this as an evidence the imaginary part of the
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Polyakov loops is vanishing, since the Polyakov loop and anti-loop are hermitian conjugate, as in
Eq. 2.2, and thus only differ in the imaginary part.

Moreover, in Fig. 5 we study the effect of including a static gluon in the system with an adjoint
Polyakov loop as in Eq. 2.2. As in the case with quark sources only, we find evidence for no flux
tube at T > Tc. The total square fields are similar to a simple sum of the fields produced by two
charges, in qualitative agreement with the superposition property.

4. Conclusions

Using CUDA codes and computations in NVIDIA GPUs only, we compute the square densities
of the chromomagnetic and chromoelectric fields produced by different Polyakov loop sources,
above and below the phase transition.

As the distance increase between the sources, the fields square densities decrease. Below the
deconfinement critical temperature, this decrease is moderate and is consistent with the widening
of the flux tube as already seen in studies at zero temperature [4], moreover the field strength
clearly decreases as the temperature increases as expected from the critical curve for the string
tension [5]. Above the deconfinement critical temperature, the fields rapidly decrease to zero as
the quarks are pulled apart, qualitatively consistent with screened Coulomb-like fields. While the
width of the flux tube below the phase transition temperature increases with the separation between
the quark-antiquark, above the phase transition the width seems to decrease with the separation.

As an outlook, we plan to complete the present study with a test of the cancellation of the
imaginary part of the Polyakov loops at T above Tc and with a quantitative study of the widening
of the flux tubes at T below Tc. We also plan to produce the different Polyakov loop - Polyakov
loop potentials.
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