

Search for flavour-changing neutral current top quark decays $t \rightarrow Hq$ in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector

Shota Tsiskaridze, on behalf of the ATLAS Collaboration*

Institut de Fisica d'Altes Energies (IFAE) E-mail: Shota.Tsiskaridze@cern.ch

A search for flavour-changing neutral current decays of a top quark to an up-type quark (q = u, c) and the Standard Model Higgs boson, where the Higgs boson decays to $b\bar{b}$, is presented. The analysis searches for top quark pair events in which one top quark decays to Wb, with the W boson decaying leptonically, and the other top quark decays to Hq. The search is based on pp collisions at $\sqrt{s} = 8$ TeV recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider and uses an integrated luminosity of 20.3 fb⁻¹. No significant excess of events above the background expectation is found, and observed (expected) 95% CL upper limits of 0.56% (0.42%) and 0.61% (0.64%) are derived for the $t \to Hc$ and $t \to Hu$ branching ratios respectively. The combination of this search with other ATLAS searches in the $H \to \gamma\gamma$ and $H \to WW^*$, $\tau\tau$ decay modes significantly improves the sensitivity, yielding observed (expected) 95% CL upper limits on the $t \to Hc$ and $t \to Hu$ branching ratios of 0.46% (0.25%) and 0.45% (0.29%) respectively. The corresponding combined observed (expected) upper limits on the $|\lambda_{tcH}|$ and $|\lambda_{tuH}|$ couplings are 0.13 (0.10) and 0.13 (0.10) respectively. These are the most restrictive direct bounds on tqH interactions measured so far.

8th International Workshop on Top Quark Physics 14-18 September, 2015 Ischia, Italy

ATL-PHYS-PROC-2016-015

28/01/2016

^{*}Speaker.

[©] Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

Following the observation of a Higgs boson by the ATLAS and CMS collaborations, a comprehensive programme of measurements of its properties is underway looking for deviations from the Standard Model (SM) predictions. An interesting possibility is the presence of flavour-changing neutral current (FCNC) decays of the top quark to the Higgs boson and a *u*- or *c*-quark: $t \rightarrow Hq$ (q = u, c). In the SM, such decays are extremely suppressed relative to the dominant $t \rightarrow Wb$ decay mode, since FCNC interactions are forbidden at the tree level and even suppressed at higher-orders in the perturbative expansion due to the Glashow-Iliopoulos-Maiani (GIM) mechanism. As a result, the SM predictions for the $t \rightarrow Hq$ branching ratios are exceedingly small: BR($t \rightarrow Hc$) ~ 10⁻¹⁵ and BR($t \rightarrow Hu$) ~ 10⁻¹⁷. However, large enhancements are possible in some beyond-SM scenarios with typical branching ratios as high as BR($t \rightarrow Hq$) ~ 10⁻⁵ [1]. An even larger branching ratio of BR($t \rightarrow Hc$) ~ 10⁻³ [2] can be reached in two-Higgs-doublet models (2HDM) without explicit flavour conservation, since a tree-level FCNC coupling is not forbidden by any symmetry.

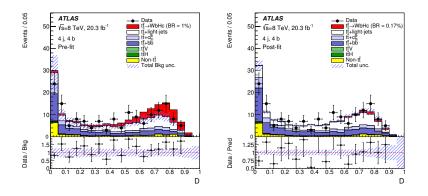
Searches for $t \to Hq$ decays have been performed by the ATLAS collaboration, taking advantage of the large samples of $t\bar{t}$ events collected during Run 1 of the LHC. In these searches, one of the top quarks is required to decay into Wb, while the other top quark decays into Hq, yielding $t\bar{t} \to WbHq$. In the following sections, a search for FCNC decays of a top quark to an up-type quark (q = u, c) and the SM Higgs boson, where the Higgs boson decays to $b\bar{b}$, is presented. A combination of the three ATLAS searches for $t\bar{t} \to WbHq$, probing the $H \to b\bar{b}$ [3], $H \to WW^*$, $\tau\tau$ [4], and $H \to \gamma\gamma$ [5] decay modes, is also performed.

2. Data Sample and Event Selection

This search is focused on the $t\bar{t} \rightarrow WbHq$ (q = u, c) process, with $W \rightarrow l\nu(e, \mu)$ and $H \rightarrow b\bar{b}$, resulting in a lepton-plus-jets final state with high b-jet multiplicity, which can be effectively exploited to suppress the otherwise overwhelming $t\bar{t}$ background. The analyses use the *pp* collision data at $\sqrt{s} = 8$ TeV collected by the ATLAS experiment between April and December 2012. Only events recorded with a single-electron or single-muon trigger under stable beam conditions are considered. The corresponding integrated luminosity is 20.3 ± 0.6 fb⁻¹.

In order to optimise the sensitivity of the search, the selected events are categorised into nine channels depending on the number of jets (4, 5 and \geq 6) and on the number of b-tagged jets (2, 3 and \geq 4). The channels most sensitive to the $t\bar{t} \rightarrow WbHu$ and $t\bar{t} \rightarrow WbHc$ signals are (4 j, 3 b) and (4 j, 4 b) respectively. The rest of the channels have significantly lower signal-to-background ratios, but they are useful for calibrating the $t\bar{t}$ +jets background prediction and constraining the related systematic uncertainties through a likelihood fit, a strategy first used in the ATLAS search for $t\bar{t} \rightarrow H$ associated production, with $H \rightarrow b\bar{b}$ [6].

3. Discriminating Variable


After event categorisation, the signal-to-background ratio is very low even in the most sensitive analysis channels, and a suitable discriminating variable between signal and background needs to be constructed in order to improve the sensitivity of the search. A powerful discriminant between signal and background can be defined as:

$$D(\mathbf{x}) = \frac{P^{\text{sig}}(\mathbf{x})}{P^{\text{sig}}(\mathbf{x}) + P^{\text{bkg}}(\mathbf{x})},$$
(3.1)

where $P^{\text{sig}}(\mathbf{x})$ and $P^{\text{bkg}}(\mathbf{x})$ represent the probability density functions (pdf) of a given event under the signal hypothesis $(t\bar{t} \rightarrow WbHq)$ and under the background hypothesis $(t\bar{t} \rightarrow WbWb)$ respectively. The calculation of $P^{\text{sig}}(\mathbf{x})$ and $P^{\text{bkg}}(\mathbf{x})$ is discussed in detail in [3].

4. Results

The best-fit branching ratio obtained for $t\bar{t} \rightarrow WbHq$, $H \rightarrow b\bar{b}$ is BR $(t \rightarrow Hc) = [0.17 \pm 0.12 \text{ (stat.)} \pm 0.17 \text{ (syst.)}]\%$, under the assumption that BR $(t \rightarrow Hu) = 0$, and BR $(t \rightarrow Hu) = [-0.07 \pm 0.17 \text{ (stat.)} \pm 0.28 \text{ (syst.)}]\%$, under the assumption that BR $(t \rightarrow Hc) = 0$. Figure 1 shows a comparison of the data and prediction in the final discriminant in the most sensitive (4j, 4b) channel, both pre- and post-fit to data, in the case of the $t \rightarrow Hc$ search.

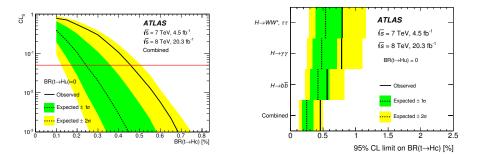


Figure 1: $t\bar{t} \to WbHc$ search: comparison between the data and prediction for the distribution of the discriminant used in the (4 j, 4 b) channels before and after the fit. The fit is performed to data under the signal-plus-background hypothesis. In the pre-fit distributions the $t \to Hc$ signal (solid red) is normalised to BR $(t \to Hc) = 1\%$ and the $t\bar{t} \to WbWb$ background is normalised to the SM prediction, while in the post-fit distributions both signal and $t\bar{t} \to WbWb$ background are normalised using the best-fit BR $(t \to Hc)$. The bottom panels display the ratios between data and either the SM background prediction before the fit or the total signal-plus-background prediction after the fit. The dashed area represents the uncertainty on the background [3].

In absence of a significant excess in data above the background expectation, 95% CL limits are set on BR($t \rightarrow Hc$) and BR($t \rightarrow Hu$). The observed (expected) 95% CL upper limits on the branching ratios are BR($t \rightarrow Hc$) < 0.56% (0.42%) and BR($t \rightarrow Hu$) < 0.61% (0.64%). These upper limits can be translated into corresponding observed (expected) limits on the couplings of $|\lambda_{tcH}| < 0.14 (0.12)$ and $|\lambda_{tuH}| < 0.15 (0.15)$.

A combination of the three ATLAS searches for $t\bar{t} \rightarrow Hq$, probing the $H \rightarrow b\bar{b}$, $H \rightarrow WW^*$, $\tau\tau$, and $H \rightarrow \gamma\gamma$ decay modes, is also performed. The observed (expected) 95% CL combined upper limits on the branching ratios are BR $(t \rightarrow Hc) < 0.46\% (0.25\%)$ and BR $(t \rightarrow Hu) < 0.45\% (0.29\%)$. The corresponding observed (expected) upper limits on the couplings are $|\lambda_{tcH}| < 0.13 (0.10)$ and

 $|\lambda_{tuH}| < 0.13 (0.10)$. A summary of the upper limits on the branching ratios obtained by the individual searches, as well as their combination, can be found in Figure 2.

Figure 2: (left) CL_s versus $BR(t \rightarrow Hc)$ for the combination of searches, under the assumption that $BR(t \rightarrow Hu)$ is zero. (right) 95% CL upper limits on $BR(t \rightarrow Hc)$ for the individual searches as well as their combination, under the assumption that the $BR(t \rightarrow Hu)$ is zero. The observed CL_s values (solid black lines) are compared to the expected (median) CL_s values under the background-only hypothesis (dotted black lines). The surrounding shaded bands correspond to the 68% and 95% CL intervals around the expected limits, denoted as $\pm 1\sigma$ and $\pm 2\sigma$, respectively [3].

5. Conclusions

The first search for $t\bar{t} \rightarrow WbHq$ with $H \rightarrow b\bar{b}$, exploiting the lepton-plus-jets final state at high b-tag multiplicity, has been presented. A novel discriminant is built to separate signal from background, whose uncertainties are constrained via a profile likelihood fit to 9 analysis channels. This analysis constitutes the single most sensitive search for $t \rightarrow Hc$ decays to date. The combination of the three ATLAS searches yields the most sensitive direct bounds on tqH interactions to date.

References

- [1] J.A. Aguilar-Saavedra, *Top flavor-changing neutral interactions: theoretical expectations and experimental detection*, Acta Phys. Polon. **B 35** (2004) 2695 [HEP-PH/0409342].
- [2] I. Baum, G. Eilam and S. Bar-Shalom, Scalar flavor changing neutral currents and rare top quark decays in a two Higgs doublet model "for the top quark", Phys. Rev. D 77 (2008) 113008 [arXiv:0802.2622].
- [3] ATLAS collaboration, Search for flavour-changing neutral current top quark decays $t \rightarrow Hq$ in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, JHEP 12 (2015) 061 [arXiv:1509.06047].
- [4] ATLAS collaboration, Search for the associated production of the Higgs boson with a top quark pair in multilepton final states with the ATLAS detector, Phys. Lett. B 749 (2015) 519 [arXiv:1506.05988].
- [5] ATLAS collaboration, Search for top quark decays $t \rightarrow qH$ with $H \rightarrow \gamma\gamma$ using the ATLAS detector, JHEP 06 (2014) 008 [arXiv:1403.6293].
- [6] ATLAS collaboration, Search for the Standard Model Higgs boson produced in association with top quarks and decaying into $b\bar{b}$ in pp collisions at $\sqrt{s} = 8$ TeV with the ATLAS detector, Eur. Phys. J. C **75** (2015) 349 [arXiv:1503.05066].