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1. Introduction

The top quark mass is a fundamental parameter of the Standard Model, which, together with
theW mass, constrained the Higgs mass even before its discovery. It also playsa role in the result
that the Standard Model vacuum lies on the border between stability and metastability regions [1],
which relies on the assumption that the world average,mt = [173.34±0.27(stat)±0.71(syst)] GeV
[2], is the top pole mass. Any deviation from this statement may change the conclusions of [1].

Top-quark mass measurements are performed by comparing experimental results with theory
predictions: the extracted mass must thus be interpreted as the mass used in thecalculation. Stan-
dard measurements, based on the template, matrix-element and ideogram methods (see, e.g., the
recent analyses in [3, 4]), rely on parton shower generators, suchas HERWIG [5] or PYTHIA
[6], which simulate the hard scattering at leading order (LO), multiple radiationin the soft or
collinear approximation and are provided with models for hadronization. TheaMC@NLO [7] and
POWHEG [8] codes generate the hard process at NLO and are matched toHERWIG or PYTHIA
for showers and hadronization. In principle, any theoretically well-defined top mass extraction
would need at least a NLO calculation for top-quark production and decay, including interference
effects: much debate has hence been taking place on whether measurements using parton showers
and hadronization models correspond to any top-mass definition. As will be discussed hereinafter,
the measured top mass must be close to the pole mass and work has been lately undertaken to assess
the theoretical uncertainty. So-called alternative methods use other observables, such as total cross
sections or distribution endpoints, which can be compared directly with fixed-order and possibly
resummed QCD calculations, thus allowing a straightforward interpretation of the extracted mass.

In Section 2, I briefly review the main mass definitions; in Sections 3 I discuss inmore detail
the interpretation of the top mass results; in Section 4 I make some final remarks.

2. Top mass definitions

Mass definitions are related to the subtraction of the ultraviolet divergences in the renormalized
self energyΣR, which, in dimensional regularization, withd = 4−2ε, at one loop in QCD, reads:

ΣR
≃

iαS

4π

{(

1
ε
− γ + ln4π +A

)

✓p−

[

4

(

1
ε
− γ + ln4π

)

+B

]

m0

}

+ i[(Z2−1)✓p−(Z2Zm−1)m0],

(2.1)
wherem0 is the bare mass,Z2 andZm the wave-function and mass renormalization constants. The
on-shell renormalization scheme, leading to the pole mass definition, is definedso thatΣR = 0
and∂ΣR/∂✓p = 0 for✓p = 0; theMS scheme fixesZ2 andZm in order to subtract the contributions
∼

1
ε −γ+ ln4π in Eq. (2.1). The renormalized propagatorsSR in the on-shell (o.s.) andMS schemes

are then expressed in terms of pole andMS masses as follows:

SR
o.s.(p)≃

i

✓p−mpole
, SR

MS ≃
i

✓p−mMS− (A−B)mMS
. (2.2)

In Eq. (2.2)mpole is the pole of the propagator after renormalization, which is in agreement with
the intuitive notion of the mass of a particle, whereasmMS may be quite far from the pole. The
relation between pole andMS masses was calculated up to four loops [9] and reads, for top quarks:

mt,pole= m̄t(m̄t)
[

1+0.42 αS +0.83 α2
S +2.37 α3

S +(8.49±0.25) α4
S +O(α5

S )
]

. (2.3)
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The last term in (2.3) yields an uncertainty of about 200 MeV on the pole-MS mass relation [9].
The self energy, when expressed in terms of the pole mass, is affected byinfrared renormalons

[10], i.e. the coefficients ofαn
S grow factorially:

ΣR(mpole,mpole)≈ mpole ∑
n

αn+1
S (2b0)

n n!. (2.4)

Due to Eq. (2.4), the pole mass gets corrections∆mpole ≃ O(ΛQCD), the so-called renormalon
ambiguity. TheMS mass is renormalon-free, but it is not a threshold mass, as it exhibits corrections
(αS/v)k, v being the top velocity, that are quite large for smallv.

By using the recent computation [9] to fit theO(α4
S ) coefficient of the renormalon calculation

in [10] and extrapolating the result to predict also the higher-order terms,one can find that the
renormalon ambiguity on the pole mass is even below 100 MeV [11]. This result,along with the
good convergence of the expansion (2.3), makes the top-quark pole mass a reliable quantity.

The MSR mass [12] depends on a parameterR, which could be, e.g., a factorization scale, and
tries to interpolate between pole andMS masses, i.e.mMSR(R)→ mpole for R → 0 andmMSR(R)→
m̄(m̄) for R → m̄(m̄). Pole and MSR masses differ by a counterterm, i.e.mpole = mMSR(R,µ)+
δm(R,µ), where theµ-dependence ofmMSR(R,µ) follows renormalization group equations. The
MSR mass is typically employed in the context of Soft Collinear Effective Theories (SCET).

3. Interpretation of the experimental results

Standard experimental measurements are carried out by using Monte Carlosimulations: since
parton showers are not exact QCD calculations, the interpretation of the measured mass in terms of
any field-theory mass definition is not straightforward and one often calls it‘Monte Carlo mass’.
However, since these measurements are done by reconstructing top-decay (t → bW ) observables,
with on-shell top quarks, the extracted mass must mimic the pole mass, which is, bydefinition, the
pole of the renormalized propagator. Such a simple picture is spoiled by the lack of higher-order
corrections, as standard parton showers are matched to the tree-level matrix element [14] and do
not fully contain one-loop and width (Γt) effects, or by colour-reconnection effects. In fact, in the
Monte Carlo hadronization models, it may happen that, for few events, theb quark in top decay
forms aB meson with an antiquark from the initial state. Much work has therefore beenundertaken
to estimate the uncertainty on the identification of the measured mass with the pole mass.

As for NLO corrections, in the aMC@NLO code NLO top decays are implemented for single-
top events [15]; intt̄ production, the decays are on shell, but spin correlations and part of the
off-shell contributions are included via MadSpin [16]. In POWHEG, NLOtop decays have been
lately implemented [17], accounting forΓt effects in different approximations.

As far as colour reconnection is concerned, Ref. [13] investigates it inthe framework of the
Lund string model, tuned to charged-particle multiplicity or transverse momentum data. It is found
that the treatment of colour reconnection can lead to an uncertainty on the topmass within 200
and 500 MeV, according to the model which is chosen. Colour connection inthe HERWIG cluster
model was instead tackled in [18], where top quarks were forced to hadronize in top mesons and
decay according to the spectator model. In this way, top quarks must form colour singlets with light
quarks; also, by using lattice-based methods, Heavy Quark Effective Theory or Non Relativistic
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Figure 1: BW invariant mass ine+e− → tt̄ events at 1 TeV. Left: comparison forT -hadron (solid) and
standard top events (dashes) withmt = 175 GeV. Right:mBW for T hadrons and different values ofmt .

QCD, one can precisely connect a meson mass to a well-defined quark-mass definition. Such a
study does not aim at detectingT -hadrons, but rather, by comparing observables in standardtt̄
samples and inT -hadron events, it may shed light on the non-perturbative uncertainty onmt . In
Fig. 1 I present theBW invariant mass distribution,B being ab-flavoured hadron in top decay, for
e+e− → tt̄ collisions at 1 TeV, in the dilepton channel, by using the HERWIG 6 event generator.
If top quarks hadronize before decaying,mBW is shifted towards higher values (Fig. 1, left), with
respect to standard top decays; in fact, inT decays, theb quark likely forms with the spectator quark
a cluster of small invariant mass, decaying into aB meson, plus soft hadrons, e.g. pions. Therefore,
mBW tends to be closer to the kinematic limit, given by the mass of theT -hadron. Figure 1 (right)
presents themBW just for T hadrons andmt = 171 and 179 GeV. Work is in progress to quantify
the discrepancies in Fig. 1 in terms of an uncertainty onmt and its interpretation as a pole mass.

In the SCET framework [12] the jet mass plays the role of a MSR mass, withR = Γt in the
case ofe+e− → tt̄ events, and can be related at NLO to the pole mass as follows:

mJ(µ) = mpole−
αS(µ)CFΓt

π

(

ln
µ
Γt

+
3
2

)

+O(α2
S ). (3.1)

One then assumes [19] that the measuredmt is a jet mass at the scale of shower cutoffQ0 ≃ 1 GeV,
yielding an uncertaintympole−mJ(Q0) ≃ 200 MeV. Within SCET, one may compare resummed
distributions, such as the thrust ine+e− → tt̄, using the MSR mass forR ∼ O(1 GeV), with Monte
Carlo spectra and calibrate the Monte Carlo mass to reproduce the SCET prediction [20].

Another approach was suggested in [21]: one first performs a simultaneous fit of the Monte
Carlo mass and of a given observable, such as total or differential cross sections, and then compares
with a (N)NLO calculation for the same quantity, using, e.g., the pole mass. The conclusion of
Ref. [21] is that the uncertainty on this calibration is roughly 2 GeV.

As for the alternative measurements, a typical example is the totaltt̄ cross section, which
was calculated to NNLO+NNLL accuracy in [22], and allows a direct extraction of the pole mass
[23, 24]: mt =

(

172.9+2.5
−2.6

)

GeV (ATLAS) andmt =
(

173.6+1.7
−1.8

)

GeV (CMS), combining 7 and 8
TeV data. In principle, even this extraction depends on the use of event generators to evaluate the
acceptance, but nevertheless both ATLAS and CMS found a mild dependence on the mass imple-
mented in the Monte Carlo code. Reference [25] investigated NNLO total andNLO differential
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cross sections in terms of theMS mass and obtained an overall milder scale dependence; the recent
calculation of NNLO differential spectra [26] should shade more light on this finding.

The top pole mass was also determined from thett̄ +1 jet cross section, following [27], which
has a stronger dependence onmt with respect to the inclusive cross section. ATLAS performed
this measurement by using POWHEG, matched to PYTHIA, taking care of unfolding detector,
hadronization and shower effects, in such a way to recover the partonictt̄ j result. The result
is mt,pole =

[

173.7±1.5 (stat.)±1.4 (syst.)+1.0
−0.5 (th.)

]

GeV; the impact of the Monte Carlo input
mass in the evaluation of the acceptance is negligible.

Other observables, which have been lately proposed, are the peak of theb-jet energy spectrum,
theb-jet+lepton invariant massmbℓ and a few distribution endpoints. The general feature of these
measurements is that they rely on the kinematic reconstruction of top-decay final states and hence,
once again, the extracted mass must be close to the pole mass. In detail, theb-jet energy measure-
ment [29] exhibits the property [30] that the position of the peak is independent of the boost from
the top to the laboratory frame, as well as of the production mechanism. The experimental mea-
surement yieldsmt = [172.29± 1.17 (stat.)± 2.66 (syst.)] GeV at 8 TeV: however, the invariance
of the peak position is only valid at LO and for inclusive spectra, and therefore it will be interesting
updating the analysis [29] by using NLO top decays.

Thembℓ spectrum was used by CMS to reconstructmt in the dilepton channel: by comparing
with the MadGraph+PYTHIA (LO) simulation,mt = (172.3±1.3) GeV was found [31]. Never-
theless, the NLO calculation ofmbl [32], employing the pole mass, is available and exhibits some
discrepancies with respect to LO parton showers [18, 33]: an extension to NLO is thus mandatory.

Reference [34] measuresmt from the endpoints of thembℓ, µbb andµℓℓ spectra, whereµbb and
µℓℓ are related to thebb andℓℓ invariant masses. This analysis minimizes the Monte Carlo system-
atics, since theb-jet can be calibrated directly from data; the leftover Monte Carlo uncertainties are
mostly due to the assumption that thet andt̄ decay chains are independent of colour reconnection.
The result, based on LO kinematic relations, ismt =

[

173.9±0.9(stat.)+1.7
−2.1(syst.)

]

GeV; compar-
ing the data with the recent implementation of POWHEG [17], accounting for someinterference
effects, can therefore give some insight on the uncertainty due to higher-order corrections.

4. Conclusions

I discussed the interpretation of the top mass results at the LHC: measurementsrelying on
the reconstruction of top-decay products yield results close to the top-quark pole mass, with an
uncertainty due to the approximations in the computations used for comparison,namely missing
loop and width corrections and colour-reconnection effects. Using the recent calculation of the
relation between pole andMS masses, the renormalon ambiguity can be proved to be smaller than
100 MeV, thus making the pole mass a suitable quantity. Work has been done to quantify the uncer-
tainty on the interpretation of the measured mass as a pole mass, by using Soft Collinear Effective
Theories or simulating fictitious top-hadron states. Alternative measurements,based on the extrac-
tion from the cross sections oftt̄ andtt̄ j events, yield the pole mass, up to small acceptance and
hadronization corrections. Other strategies, using energy peaks, endpoints andmbℓ look promising
and worthwhile to be pursued at 13 TeV, thanks to the higher statistics and thelate implementation
of NLO top decays in shower generators.
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