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In this proceeding we review the calculations of electroweak corrections in top-quark physics
at hadron colliders. The impact of electroweak corrections to the cross section of top-quark pair
production is considered in another contribution of this conference proceedings [1] and has also
been reviewed in [2].

1. Top-quark charge asymmetry

At the Tevatron, since the initial state is invariant under CP transformation, the top-quark
charge asymmetry is equivalent to a forward-backward asymmetry. This observable has received
particular attention in the recent years due to the observed deviations between Standard Model
(SM) predictions and measured values, which reached up to 3.5σ in the analysis presented in
[3] by the CDF collaboration. At the LHC, a forward-backward asymmetry is not present, since
proton–proton collisions are symmetric, but it is possible to measure a so-called central asymmetry,
which has the same physics origin. In the following we will refer only to the forward-backward
asymmetry, however, the same arguments apply also to the central asymmetry.

At LO, which is of O(α2
s ), the top-quark pair hadroproduction originates from qq̄ and gg initial

states via QCD interactions. However, LO contributions are symmetric. QCD induces asymmet-
ric terms only starting from NLO corrections [4], which are of O(α3

s ). The forward-backward
asymmetry, independently form the specific definition employed, can be in general written as

Att̄ =
σ+−σ−
σ++σ−

. (1.1)

The numerator of the r.h.s of eq. (1.1) consists of the difference between the cross sections for
the production of a top-quark respectively in the forward and backward direction, while the de-
nominator is the total cross section. Thus, by expanding Att̄ in powers of αs we obtain that the LO
prediction for Att̄ is of O(αs), i.e., it is induced by the asymmetric NLO QCD corrections of O(α3

s )

to the cross section.
Electroweak interactions induce non-vanishing asymmetric terms to the numerator of Att̄ (see

ref. [5]) starting from contributions of O(α2
s α) and O(α2). The former consists of NLO EW

corrections to the cross section and leads to O(α) contributions to Att̄ , while the latter originates
form tree-level only diagrams and lead to O(α2/α2

s ) contributions to Att̄ .
Independently from the perturbative order considered, since the gg initial state is symmetric,

it cannot contribute to the asymmetry. Thus the asymmetric terms from the O(α3
s ), O(α2

s α) and
O(α2) contributions can originate from the qq̄ initial state but not from gg. In particular, the NLO
QCD O(α3

s ) asymmetric terms originate only from the interference of tree-level diagrams and
boxes and, equivalently, only from the interference of the real gluon emissions from the initial and
final state.1 For this reason it is useful to divide the NLO EW O(α2

s α) asymmetric terms into NLO
QED contributions, which involve only QCD and QED interactions, and NLO Weak contributions
involving the remaining weak interactions. Indeed, the asymmetric NLO QED contributions can
be obtained by substituting in all the possible way one gluon into one photon in the matrix ele-
ments entering the calculation of the asymmetric NLO QCD contributions. Thus, the NLO QED

1Also (anti)quark radiation via the qg(q̄g) initial state induces an asymmetry. However, its size is negligible and
thus not discussed here.
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contributions can be simply obtained by multiplying the NLO QCD contribution by the RQED(Qq)

factor defined as

RQED(Qq) =
36
5

QqQt
α

αs
=⇒ RQED(Qu)∼ 0.2 , RQED(Qd)∼−0.1 , (1.2)

where Qq is the charge of the quark in the initial state and the numerical factor is due to color. This
result is independent of the specific definition used for the asymmetry and the cuts applied on the
tt̄ pair.

The NLO Weak contributions originate from the same diagrams of the NLO QED ones, where
the photon has to be replaced by a Z boson.2 In this case the value cannot be expressed via a simple
factor that is independent on the cuts and the specific definition of Att̄ .

The O(α2) contributions simply originate from tree-level diagrams with only EW interactions,
i.e., from the s-channel production via a photon or a Z boson.

The total size of the EW O(α)+O(α2/α2
s ) contributions to Att̄ amounts to ∼ 20% of the

O(αs) contribution from pure QCD effects, the precise value of this quantity depends on the spe-
cific definition of Att̄ , the cuts and the input parameters. On the contrary, the dominant component
of the electroweak contributions, the QED part of the O(α), is independent of the cuts applied, the
Att̄ definition and, obviously, the QCD renormalisation scale.

The electroweak contributions to the asymmetry, being ∼ 20% of the QCD-induced one and
with the same overall sign, decrease the deviation between the SM theoretical predictions and the
values measured by the CDF and D0 collaborations. Very recently also the NNLO QCD corrections
of O(α4

s ) to the numerator of Att̄ have been calculated [6] and, together with the new results from
analyses based on larger data sets, they have further contributed to diminish the previously observed
deviations. Moreover, this calculation has a posteriori proved that the approach consisting in a
pure expansion in powers of αs and α for Att̄ , as presented here, is preferable to the inclusion of
O(α3

s ) terms in the denominator of Att̄ without the O(α4
s ) terms in the numerator. Indeed both

contributions enter the O(α2
s ) term of Att̄ , but they have opposite signs and largely cancel each

other. As said, the same physics can be studied at the LHC via a central asymmetry. In this case the
relative size of the EW contributions is a bit smaller, i.e., ∼ 15− 20% of the QCD-induced term,
depending on the proton–proton c.o.m. energy (see for further details Refs. [7, 8]). In the case of
the central asymmetry at the LHC, no significant deviation between SM predictions and measured
values is present at the moment.

Besides EW fixed-order contributions, effects from resummed EW Sudakov logarithms have
also been studied in [9] and found to be ∼ 5% of the QCD-induced O(αs) contribution of Att̄ .
However, this result cannot be straightforwardly added to the previously discussed fixed-order con-
tributions, because it would lead to a non-negligible double counting of O(α) Sudakov logarithms.

2. Top-quark pair production in association with a heavy boson

The production of a top-quark pair in association with a heavy boson consists of the following
different final states: tt̄H, tt̄Z, tt̄W+ and tt̄W−. All these processes are relevant in the context of SM

2Although it can be formally included, the Z boson real radiation (tt̄Z) is typically discarded, since it leads to
negligible contributions.
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13 TeV : δ (%) tt̄H tt̄Z
NLO QCD 29.7+6.8

−11.1±2.8 (24.2+4.8
−10.6±4.5) 45.9+13.2

−15.5±2.9 (40.2+11.1
−15.0±4.7)

LO EW 1.2±0.9 (2.8±2.0) 0.0±0.7 (2.1±1.6)
LO EW no γ −0.4±0.0 (−0.2±0.0) −1.1±0.0 (−0.3±0.0)

NLO EW −1.2±0.1 (−8.2±0.3) −3.8±0.2 (−11.1±0.5)
NLO EW no γ −1.4±0.0 (−8.5±0.2) −4.1±0.1 (−11.5±0.3)

HBR 0.89 (1.87) 0.96 (2.13)

Table 1: Relative corrections for tt̄H and tt̄Z production in the α(mZ)-scheme at 13 TeV. The errors corre-
spond to PDF uncertainties, for the NLO QCD also the scale uncertainties are displayed.

13 TeV : δ (%) tt̄W+ tt̄W−

NLO QCD 50.1+14.2
−13.5±2.4 (59.7+18.9

−17.7±3.1) 51.5+14.8
−13.8±2.8 (66.3+21.7

−19.6±3.9)
LO EW 0 0

LO EW no γ 0 0
NLO EW −7.7±0.2 (−19.2±0.7) −6.7±0.2 (−18.3±0.8)

NLO EW no γ −8.0±0.2 (−20.0±0.5) −7.0±0.2 (−19.1±0.6)
HBR 3.88 (7.41) 6.50 (15.01)

Table 2: Same as in Table 1, but for tt̄W+ and tt̄W−

and Beyond-the-Standard-Model (BSM) both as background and signal. For instance, the measure-
ments of tt̄H and tt̄Z production can be respectively used to directly probe the coupling of the top
quark with the Higgs and Z boson. On the other hand, tt̄Z and tt̄W± can be irreducible backgrounds
of tt̄H production. Thus, precise predictions for these processes are extremely important.

NLO QCD calculations to the production of a top-quark pair in association with a heavy bo-
son have been computed for the first time in [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. These
corrections have been recently (re-)calculated in [21] for all these processes and also for the asso-
ciate production of a top-quark pair with two vector bosons and for four-top production. In [21]
NLO QCD corrections to several distributions and at different hadronic c.o.m. energies are shown
and their dependence on renormalisation and factorisation scale definitions is discussed in detail.
In the following we focus on effects from electroweak corrections. NLO Weak corrections to tt̄H
production have been calculated in [22] with a semi-automatic approach and including also NLO
QED effects in [23]. Afterwards, NLO EW (Weak+QED) corrections have been calculated in a
completely automated approach in [24] for the tt̄H, tt̄Z, tt̄W+ and tt̄W− processes, together with
NLO QCD corrections. We will discuss these results from [24], which have been calculated within
the same framework (MADGRAPH5_AMC@NLO [25]) and using the same input parameters.

The LO cross section for the associate production of a top-quark pair with a heavy boson is
of O(α2

s α). In [24] the NLO QCD corrections of O(α3
s α), the NLO EW corrections of O(α2

s α2)

and the O(αsα
2) contribution from only tree-level diagrams, the so-called LO EW contribution,

have been calculated. The EW corrections (LO EW and NLO EW) have been presented both
with and without the contribution from initial-state photons, which has been evaluated via the
NNPDF2.3_QED PDF set [26] including the photon PDF. We have summarised inclusive results at
13 TeV in Table 1 for tt̄H and tt̄Z and in Table 2 for tt̄W+ and tt̄W−. Results in brackets refers to
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the boosted regime where a cut of 200 GeV on the transverse momenta of the top, the antitop and
the heavy boson is applied. These kind of cuts are particularly interesting for the case of tt̄H, since
it was shown in [27] that the signal over background ratio could be enhanced with boosted Higgs
boson and top quarks. As expected, due to the Sudakov logarithms, NLO EW corrections are in
this regime larger in magnitude and negative.

For tt̄H and tt̄Z production, electroweak corrections to the total cross-section are within the
NLO QCD scale uncertainties, whereas in the boosted regime or in general for large pt’s they
are comparable in size with scale uncertainties and thus very important. Relatively to the size
of the corrections, the PDF error is large and mostly induced by the initial-state photons in the
LO EW. The situation for tt̄W+ and tt̄W− is analogous, but corrections are much larger and LO
EW contributions are analytically zero. Also photon PDF errors are relatively small. In both
Tables 1 and 2 the contribution from the radiation of an additional heavy boson (HBR), which is
of O(α2

s α2) as the NLO EW, is also listed. Depending on the specific experimental analyses, this
final state may contribute to the inclusive associate production of a top quark pair with a heavy
boson, leading to partial cancellations of the EW Sudakov logarithms or, in the case of tt̄W± even
to overcompensations (see [24] for details).

3. Single top

Single top production can be classified in three classes of processes: s-channel, t-channel and
associate tW production. Again, we focus only on EW corrections. An updated list of references
of calculations of QCD corrections can be found in the recent review in [28], which covers several
aspects of top-quark physics at colliders.

The calculation of NLO EW corrections of the associated tW production has been performed
firstly without taking into account hard real-photon radiation in [29] and then by including it in
[30]. Both the calculations have been performed for the extended MSSM NLO EW corrections,
explicitly separating the SM subset from the contribution induced by loops with supersymmetric
particles. Similarly, the calculation of NLO EW corrections to the t-channel production has been
performed firstly without hard radiation in [31] and then by including it in [32], again within the
MSSM and separating the SM-subset contribution. The partonic NLO EW corrections to s- and
t-channel production have been calculated also in [33] and integrated in the Monte-Carlo tool
MCSANC-V1.01 [34]. All these calculations have been performed in the five-flavour scheme. In the
following we will comment results for the LHC with 14 TeV c.o.m. energy from [30, 32, 34].

In tW associate production, NLO EW corrections to the m(tW ) distribution range from +5%
of the LO prediction, at the threshold, to −3% at m(tW ) = 1.3 TeV. In t−channel production NLO
EW corrections to the total cross section are ∼−3.6% of the LO, i.e., almost of the same absolute
size of NLO QCD corrections (∼ +4%). However, they grow in magnitude for large pT (t), e.g.,
they reach the value of −15% at pT (t) =500 GeV. In s-channel production, NLO EW corrections
are ∼−2% of the LO prediction.

All these results do not include contributions form initial-state photons, which may be not
negligible and potentially introduce large uncertainties due to the photon PDF. However, similarly
to the case of NLO QCD, photon-initiated quark radiation would introduce, e.g., tt̄ resonant con-
figurations, which have to be removed or subtracted.
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4. Conclusion

In this proceeding we have discussed the impact of EW corrections in top-quark physics.
Specifically, we focused on the case of the top-quark charge asymmetry, the associate production
with a heavy boson and the single-top production mechanisms. The size of the corrections is
in general not negligible, especially for the case of the charge asymmetry and in the tail of the
distributions in single-top and associate production.
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