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Studies of top physics in the boosted sector have known a fast-growing development with the
arrival of high-energy data at the LHC. Different techniques to identify high-pr top quarks based
on substructure analyses of large radius jets have been developed for Run-1 and Run-2 data.
New results are presented on the optimization and performances, for the different techniques
(HEPTopTagger, Shower Deconstruction and substructure variables cut-based taggers), using pp
collision data and MC simulations at /s = 8 TeV in ATLAS.
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1. Introduction

Top quark plays an important role in many beyond-the-standard-model scenarios. When pro-
duced by a massive new particle, the top quark will have a very high transverse momentum, and
will be referred to as boosted top. In this regime, the study of the substructure of the large radius jet
that fully contains the hadronic decay products is more efficient than the resolved reconstruction.
The algorithms that identify these decays are called top-taggers.

2. Top-tagging algorithms

The ATLAS collaboration [1] has studied intensively three types of top-tagging algorithms [2].

The substructure variable taggers are based on simple rectangular cuts on one or several
substructure variables, such as the mass m of the trimmed jet [3], the k; splitting scale [4] (v/d2
or v/d»3) obtained during the reclustering of the jet constituents with the k; algorithm, and the N-
subjettiness ratio [5] (73, and ;) obtained from the N-subjettiness variables Ty. Six substructure
variable taggers have been studied: tagger I (v/dj» > 40 GeV), tagger II (m > 100 GeV), tagger
I (m > 100 GeV and v/d» > 40 GeV), tagger IV (m > 100 GeV, v/dj» > 40 GeV and /d»3 >
10 GeV), tagger V (m > 100 GeV, v/d1, > 40 GeV and v/da3 > 20 GeV) and W' top-tagger (v/d{> >
40 GeV, 0.4 < 11 < 0.9 and 735 < 0.65).

In the shower deconstruction algorithm (SD) [6], likelihoods are calculated for the case the
jet originates from the hadronic decay of a top quark (signal) and for the case the jet originates from
a background process where hard gluons split into gg (background). For signal and background, the
likelihoods are calculated from theoretical first principles, including the effect of the parton shower.
Subjets of the large-R jet are identified with partons and a weight is calculated for each possible
shower history that leads to the observed subjet configuration. This weight is proportional to the
probability that the assumed initial particle generates the final configuration, taking into account
the standard model amplitude for the underlying hard process and the Sudakov form factors for
the parton shower. A final discriminant variable y is calculated as the ratio of the sum of the
signal-hypothesis weights and the sum of the background-hypothesis weights. The large-R jet is
considered as tagged if the y value is higher than a given threshold.

The HEPTopTagger algorithm [7] tests the compatibility of the hard structure of a C/A R =
1.5 jet with the 3-prong pattern of the hadronic top quark decay. Firstly, a mass drop criterion is
used to decompose the large-R jet into a collection of subjets with mass lower than a given value.
All possible triplets from this collection are then filtered to reduce contamination from underlying
events and pile-up and tested for compatibility with a hadronic top quark decay, based on kinematic
requirements on the reclustered three subjets and on the top candidate jet built from this procedure.
The large-R jet is considered as tagged if there is at least one triplet satisfying this compatibility.

3. Results

The performance of these top-taggers have been studied using simulation and approximately
20 fb~! of /s = 8 TeV Run-1 data.

From simulation, the considered large-R jets from different techniques can be geometrically
matched to the corresponding trimmed anti-k; R = 1.0 particle-level jet. For a given transverse
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momentum and pseudorapidity region, the background rejection can be plotted as a function of
the tagging efficiency, as visible in Fig.1. The lines correspond to a scan on the threshold of the
discriminating variable used in the tagger.

The efficiency in background-subtracted data and in simulation is shown in Fig.2. The vertical
error bars indicate the statistical uncertainty on the efficiency measurement and the data uncertainty
band shows the systematic uncertainties. The ratio between the efficiencies in data and simulation
is shown at the bottom of each subfigure and the error bar indicates the statistical uncertainty and
the band the systematic uncertainty (taking into account the correlations).

4. Conclusion

The ATLAS collaboration has studied intensively three types of top-tagging algorithms, using
approximately 20 fb~! of /s = 8 TeV Run-1 data. The comparisons with data of the discriminating
variables show that the substructure techniques used in those top-taggers are well-modeled. The
efficiencies and the mistag rates have been measured, and performance comparisons in simulation
have been provided. Those can be used to evaluate which top-taggers are optimal for a given
analysis, this choice being dependent on, for example, the considered pr range, the background
contamination, or the final state.
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Figure 1: Background rejection as a function of the tagging efficiency of large-R jets, as obtained from MC
simulations for different pr ranges for trimmed anti-k; R = 1.0 particle-level jets to which the large-R jets
are geometrically matched. [2]
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Figure 2: Tagging efficiency of large-R jets in the central region, for different top-taggers (substructure
tagger III, substructure tagger W', shower deconstruction and HEPTopTagger), from data and simulation. [2]



