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1. Introduction

A generic heterotic string vacuum is characterised by various gauge forces that typically do not
combine into a simple gauge group. In fact, already at the string scale the gauge group factorises
as G = ∏α Gα . Nevertheless, the strength of the different gauge interactions is determined at three
level by a single universal coupling, namely the string coupling constant1 gs.

This universality is however in principle spoiled at the quantum level, where the running of
the gauge couplings strongly depends on the details of the spectrum of the charged particles. At
the one-loop level one has the familiar expression

16π2

g2
α(Λ)

=
16π2

g2
s

+βα log
M2

s

Λ2 +∆α , (1.1)

where the β -function coefficients βα are determined by the (finite number of) light states only,
while the infinite tower of massive string states computes the threshold corrections ∆α . These are
functions of the masses of the heavy states, and typically depend on the details of the compact
space. Since the masses of states in the lower-dimensional spectrum can depend on the moduli of
the internal manifold via their Kaluza-Klein and winding excitations, the ∆’s are actually functions
on the moduli space of the string compactification.

In any quantum field theory with a finite number of degrees of freedom these functions are
model dependent and thus the unification of gauge couplings at the quantum level is an issue that
needs to be addressed independently for any vacuum of interest. String theory, however, possesses
an infinite number of heavy states. It is well-known that this peculiarity highly constrains the full
spectrum via the GSO projection (or modular invariance) and is actually responsible for the mild
UV behaviour of string perturbation theory. It is thus reasonable to wonder whether it can also
serve the purpose of constraining the perturbative expansion and yield quantum corrections which
are in a sense universal and thus model independent.

Starting from the 90’s, tremendous progress has been made in the analysis of quantum cor-
rections to the low-energy effective action of heterotic vacua, and indeed a universal behaviour
for the difference ∆αβ ≡ ∆α −∆β of gauge thresholds in supersymmetric configurations has been
discovered [1, 2, 3, 4]. A key role in this behaviour is played by supersymmetry. In particular,
in supersymmetric vacua, the moduli dependence of the thresholds can only originate from sec-
tors that preserve N = 2 supersymmetry and thus the associated one-loop amplitude is highly
protected, receiving contributions only from the BPS spectrum. As a result, the pure stringy excita-
tions contribute to the integrand holomorphically in the Teichmüller parameter τ and this, together
with modular invariance and, thus, with the constraints coming from the infinite tower of heavy
states, fixes uniquely the one-loop amplitudes, up to an overall additive constant, and universality
is unavoidable.

What happens when supersymmetry is spontaneously broken or absent? Is universality still
present or is the problem of gauge coupling unification an issue that must be addressed in a model
dependent way?

Clearly, in order to be able to treat this problem in a fully-fledged string environment one
needs to restrict the analysis to non-supersymmetric vacua which admit a solvable Conformal

1For simplicity, we assume here that all gauge groups are realised as level-one Kac-Moody algebras.
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Field Theory description. This is the case for the so-called coordinate dependent compactifica-
tion [5, 6, 7, 8], i.e. a stringy realisation of the Scherk-Schwarz mechanism [9, 10]. It amounts
to shifting the masses of the perturbative states by their R-symmetry charges. More conveniently,
this deformation can be reformulated at the world-sheet level in terms of freely-acting orbifolds2,
where a supersymmetry breaking generator gSB is coupled to a shift along one (or more) of the
compact cycles. The supersymmetry breaking scale is thus related to the size of the compact cy-
cles and supersymmetry can be recovered at the boundary of the moduli space. Whether or not
this mechanism corresponds to a spontaneous breaking is an interesting open issue (see [13] for a
related discussion).

In this case, the moduli dependent threshold corrections are no longer BPS saturated, and
all string states do contribute to the running of the gauge couplings. As a result, the integrand
is a genuine non-holomorphic function of τ , and modular invariance, necessarily present in any
consistent string vacuum, is no longer able to fix the amplitude uniquely.

Still, we have recently found [14, 15] that under some reasonable conditions on the supersym-
metry breaking mechanism, an unexpected universal behaviour of ∆αβ continues to hold. It is due
to the presence of a spectral flow within the gauge degrees of freedom of the heterotic string, which
now projects onto the bosonic (right moving) ground state. This is an important property for the
phenomenology of non-supersymmetric heterotic vacua, a topic that has recently attracted renewed
interest [13, 16, 17, 18, 19, 20, 21].

For concreteness we shall restrict our attention to compactifications of the ten-dimensional
E8×E8 heterotic string on the orbifolds T 6/ΩS×ΩSB, where ΩS is some supersymmetry-preserving
group while ΩSB is responsible for the complete breaking of supersymmetry and realises the freely-
acting stringy Scherk-Schwarz mechanism. Since we are interested in the moduli dependence of
the thresholds, ΩS must contain sectors which preserve N = 2 supersymmetry. For this reason,
and without loss of generality, it suffices to restrict our attention to the cases where ΩS acts on a T 4

torus and realises the orbifold limit of the K3 surface. The supersymmetry breaking orbifold ΩSB

is a priori unconstrained but, as we shall see, requirement of universality puts tight constraints on
it.

Before moving to present the main results some comments are in order. Firstly, whenever
supersymmetry is broken in string theory, one has to face the problem of classical (and quantum)
stability of the vacuum. In fact, Scherk-Schwarz reductions in string theory usually induce tachy-
onic instabilities in some regions of moduli space, which are in a sense related to the Hagedorn
instability of string thermodynamics. Although models which are classically stable at any point of
moduli space have been constructed [22, 23], and a link between the classical tachyons and prop-
erties of the tower of string excitations have been established [24, 25, 26], vacuum stability is still
an open issue. In most cases the large-volume regime and/or the absence of Wilson lines guarantee
a sensible perturbative analysis, or the blowing-up of orbifold singularities may turn the tachyonic
states massive [16]. However, in general one has to be careful that Coleman-Weinberg-like poten-
tials do not destabilise the vacuum. Secondly, low-scale supersymmetry breaking requires the size
of the extra dimensions to be quite large. This observation can have some important consequences

2A recent discussion of the relation between freely-acting (a)symmetric orbifolds, Scherk-Schwarz gaugings of
supergravity and non-geometric flux compactifications can be found in [11, 12].
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on the validity of the whole approach. Large volumes usually induce sizeable one-loop contribu-
tions to the vacuum energy, unless suitable cancellations occur [27, 28, 13, 29]. Similarly, they
can induce large corrections to the running of the low-energy gauge couplings which invalidates
the perturbative expansion [30, 29, 31]. A full control of these issues in a phenomenologically
attractive scenario is still far from being achieved.

The paper is organised as follows. In section 2 we shall compute the threshold corrections for
a simple, prototype model that manifests gauge threshold universality, while in section 3 we shall
present the conditions that ΩSB must meet in order for universality to emerge. More details can be
found in [14, 15, 32].

2. Gauge Threshold Universality: a simple example

Let us consider the simple case of the E8 × E8 heterotic string compactified on the T 4 ×
T 2/Z2×Z2 orbifold. The first Z2 acts on the T 4 coordinates only and realises a singular limit
of the K3 surface, thus preserving N = 2 supersymmetry in four dimensions. The second Z2

orbifold is instead responsible for the breaking of supersymmetry and its generator is given by
(−1)F+F1+F2δ . Here F is the space-time fermion number, F1,2 assigns a minus sign to the spinorial
representation inside E8 ∼ Spin(16)/Z2, while δ is an order-two shift along the horizontal side of
the T 2 with Kähler and complex structure moduli T and U . The one-loop partition function reads

Z =
1
2

1

∑
H,G=0

1
2

1

∑
h,g=0

[
1
2

1

∑
a,b=0

(−)a+b
ϑ

[
a/2
b/2

]2
ϑ

[
a/2+h/2
b/2+g/2

]
ϑ

[
a/2−h/2
b/2−g/2

]]

×

[
1
2

1

∑
k,`=0

ϑ̄

[
k/2
`/2

]6
ϑ̄

[
k/2+h/2
`/2+g/2

]
ϑ̄

[
k/2−h/2
`/2−g/2

]] [1
2

1

∑
r,s=0

ϑ̄

[
r/2
s/2

]8
]

× 1
η12η̄24 (−)

H(b+`+s)+G(a+k+r)+HG
Γ2,2

[H
G
]

Λ
K3
[

h
g

]
, (2.1)

and is written in terms of the Dedekind η-function, the Jacobi theta constants ϑ with characteris-
tics, and of the (twisted) lattices. In particular,

Γ2,2
[H

G
]
= τ2 ∑

~m,~n
eiπGm1 q

1
4T2U2

|m2−Um1+T̄ (n1+H
2 +Un2)|2 q̄

1
4T2U2

|m2−Um1+T (n1+H
2 +Un2)|2 (2.2)

is the shifted Narain partition function associated to the freely-acted T 2, while the contributions of
the world-sheet bosons along the T 4 is encoded into

Λ
K3[h

g

]
=


Γ4,4 for (h,g) = (0,0) ,

16 |η |12∣∣∣ϑ[ 1/2+h/2
1/2+g/2

]
ϑ

[
1/2−h/2
1/2−g/2

]∣∣∣2 for (h,g) 6= (0,0) ,
(2.3)

with Γ4,4 being the conventional Narain lattice associated to the T 4. The massless spectrum can be
extracted from eq. (2.1) using standard techniques, and is not supersymmetric. In particular, the
two gravitini of the K3 compactification acquire the mass

m2
3/2 =

|U |2

T2U2
, (2.4)
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that sets the scale of supersymmetry breaking. For a squared torus of radii R1 and R2 and van-
ishing B field, the previous expression simply reduces to m2

3/2 = 1/R2
1. The gauge sector includes

non-Abelian vector bosons with gauge group SO(16)×SO(12). Notice that, as in the parent ten-
dimensional SO(16)×SO(16) non-supersymmetry string [33, 34], the spectrum is free of tachy-
onic excitations at the generic point of the (T,U) moduli space. Tachyons are, however, expected
to emerge if Wilson lines for the non-Abelian gauge group are turned on. We shall forbid this
possibility in the present investigation, and work in regions of moduli space which are classically
stable.

Contrary to standard N = 2 compactifications, the light spectrum charged with respect to the
non Abelian gauge group depends on the position on the moduli space of the two-torus. This is
due to the reversed GSO projection induced by the Scherk-Schwarz boost in the sector twisted by
the susy breaking generator. As a result, the RNS vacuum survives the projection. It has non trivial
windings and transforms in the bi-fundamental representation of SO(16)×SO(12),

O4O4V̄12Ō4V̄16 ×
Γ2,2
[1

0

]
−Γ2,2

[1
1

]
2

. (2.5)

The mass of the lightest excitations, corresponding to vanishing momentum and windings along
the second T 2 cycle, while carrying non-trivial momentum and winding numbers along the Scherk-
Schwarz cycle m1 = 2n1 =±1, is given by

m2 = |pR|2 =
|U−T/2|2

T2U2
. (2.6)

Therefore, these states can become massless at the point U = T/2, that corresponds to pR = 0. As
we shall see, these states are responsible for the logarithmic divergence of the gauge thresholds.

Regardless of the presene or not of space-time supersymmetry, the one-loop heterotic thresh-
olds ∆α are given by [35]

∆α = R.N.
∫

F
dµ

iτ2

πη2η̄2 ∑
a,b

∂τ

θ [a/2
b/2 ]

η

 TrH [ a
b ]

[(
Q2

α −
1

4πτ2

)
qL0−c/24 q̄L̄0−c̄/24

]
. (2.7)

The trace runs over the Hilbert space H [a
b ] of the internal (c, c̄) = (9,22) CFT system with given

spin structures, and is weighted with a Cartan charge Qα . The presence of τ
−1
2 , ascribed to a

contact term in the correlation function of the Kac-Moody currents, is independent of the gauge
group charges and can be associated to the universal coupling of the dilaton. The modular integral
with measure dµ = τ

−2
2 dτ1dτ2 is to be performed over the SL(2;Z) fundamental domain F , and

we invoke the modular-invariant regularisation prescription of [36, 37, 38] to treat the infra-red
divergences ascribed to the massless string states.

Because of the free action of the susy-breaking orbifold on the T 2, it is actually convenient to
organise the contributions to the thresholds as

∆α =
∫

F
dµ ∑

H,G=0,1
∆α

[H
G

]
(T,U ;τ) , (2.8)

where each term in the sum refers to the H-twisted sector with the insertion of gG
SB in the trace.

Cleary, ∆α

[0
0

]
corresponds to the N = 2 thresholds and thus is invariant under the full modular

5
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group. It is associated to a BPS amplitude where the RNS sector of the heterotic string is taken in its
ground state. The remaining three terms are, instead, non-supersymmetric and receive contributions
from the whole tower of string excitations. They are separately not modular invariant, but rather
they form an SL(2;Z) orbit of Γ0(2) invariant expressions, where Γ0(2) is the Hecke congruence
subgroup of order 2. In fact,

∆α

[1
0

]
= S ·∆α

[0
1

]
and ∆α

[1
1

]
= T S ·∆α

[0
1

]
. (2.9)

For this reason, it is convenient to partially unfold the non-supersymmetric contributions and trade
the integral of ∆α

[0
1

]
+∆α

[1
0

]
+∆α

[1
1

]
over the fundamental domain F for an integral of ∆α

[0
1

]
only, but now over the larger Γ0(2) fundamental domain F2. As a result, eq. (2.8) reduces to

∆α =
∫

F
dµ ∆α

[0
0

]
(T,U ;τ)+

∫
F2

dµ ∆α

[0
1

]
(T,U ;τ) . (2.10)

Explicit computations for the case at hand yield

∆SO(16)
[0

0

]
= − 1

24
Γ2,2
[0

0

] ˆ̄E2Ē4Ē6− Ē2
6

η̄24

∆SO(16)
[0

1

]
= − 1

576
Γ2,2
[0

1

] ΛK3
[0

0

]
η12η̄24 (ϑ

8
3 −ϑ

8
4 )ϑ̄

4
3 ϑ̄

4
4

[
( ˆ̄E2− ϑ̄

4
3 )ϑ̄

4
3 ϑ̄

4
4 +8η̄

12
]

− 1
48

Γ2,2
[0

1

] ϑ̄ 4
3 ϑ̄ 4

4 (ϑ̄
4
3 + ϑ̄ 4

4 )
[
( ˆ̄E2− ϑ̄ 4

3 )ϑ̄
4
3 ϑ̄ 4

4 +8η̄12
]

η̄24

− 1
72

Γ2,2
[0

1

] ϑ 4
2 (ϑ

8
3 −ϑ 8

4 )

η12
( ˆ̄E2− ϑ̄ 4

3 )ϑ̄
4
3 ϑ̄ 4

4 +8η̄12

η̄12 , (2.11)

and

∆SO(12)
[0

0

]
= − 1

24
Γ2,2
[0

0

] ˆ̄E2Ē4Ē6− Ē3
4

η̄24

∆SO(12)
[0

1

]
= − 1

576
Γ2,2
[0

1

] ΛK3
[0

0

]
η12η̄24 (ϑ

8
3 −ϑ

8
4 )ϑ̄

4
3 ϑ̄

4
4

[
( ˆ̄E2− ϑ̄

4
3 )ϑ̄

4
3 ϑ̄

4
4 +8η̄

12
]

− 1
48

Γ2,2
[0

1

] ϑ̄ 8
3 ϑ̄ 8

4

[
ˆ̄E2(ϑ̄

4
3 + ϑ̄ 4

4 )+ ϑ̄ 8
2 −2ϑ̄ 4

3 ϑ̄ 4
4

]
η̄24

− 1
72

Γ2,2
[0

1

] (ϑ 4
2 (ϑ

8
3 −ϑ 8

4 )

η12

ˆ̄E2ϑ̄ 4
3 ϑ̄ 4

4
η̄12

+
ϑ 4

2 ϑ 4
4 |ϑ 4

2 −ϑ 4
4 |2−ϑ 4

2 ϑ 4
3 |ϑ 4

2 +ϑ 4
3 |2

η12 η̄12 ϑ̄
4
3 ϑ̄

4
4

)
. (2.12)

Aside from the holomorphic contributions ∆SO(12)
[0

0

]
and ∆SO(16)

[0
0

]
originating from the N = 2

supersymmetric sector, the remaining terms are manifestly non-holomorphic as a consequence of
the breaking of supersymmetry. The first line in ∆α

[0
1

]
is universal and depends on the hypermulti-

plet moduli of the K3 surface. The second line is again holomorphic, and indeed would correspond
to a spontaneous N = 4→N = 2 breaking. It is BPS saturated, and is due to the simultaneours

6
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action of the two Z2’s. Finally, the last contribution is again non-holomorphic and originates from
sectors which are genuinely non-supersymmetric.

When taking the difference of gauge thresholds something surprising happens. As expected,
the contact terms due to the universal dilaton exchange cancel out. Similarly, the contribution of
the K3 hypermultiplets simplifies since it refers to a sector with trivial action of the supersymmetric
Z2 orbifold which, thus, does not distinguish between the two gauge groups. What is completely
not obvious is that also the remaining terms simplify, and yield a purely holomorphic contribution,

∆SO(16)−∆SO(12) =−72
∫

F
dµ Γ2,2

[0
0

]
− 1

3

∫
F2

dµ Γ2,2
[0

1

] (ϑ 12
2

η12 −8
)
. (2.13)

This remarkable fact is a consequence of the the presence of MSDS-like spectral flow [39, 40, 41,
42] at work in the gauge sector of the heterotic string, according to which the combination

ϑ 8
2 |ϑ 4

3 +ϑ 4
4 |2ϑ̄ 4

3 ϑ̄ 4
4 −ϑ 4

2 ϑ 4
3 |ϑ 4

2 −ϑ 4
4 |2ϑ̄ 4

3 ϑ̄ 4
4 +ϑ 4

2 ϑ 4
3 |ϑ 4

2 +ϑ 4
3 |2ϑ̄ 4

3 ϑ̄ 4
4

η12 η̄24 (2.14)

is purely holomorphic [14, 15]! As shown in [15], this unexpected property is not an accident of
the specific model, but is actually the consequence of a more general universality identity for the
differences of group traces

∑
k,`,c,d=0,1

(−1)F [(k+c)G+(`+d)H]ϑ
[k/2
`/2

]6
ϑ
[k/2+h/2
`/2+g/2

]
ϑ
[k/2−h/2
`/2−g/2

]
ϑ
[c/2

d/2

]8
∂τ log

ϑ

[k/2

`/2

]
ϑ

[c/2

d/2

]
=−4πi

[
4−16

(
1+(−1)FH

2

)(
1+(−1)FG

2

)]
η18ϑ

[1/2+h/2
1/2+g/2

]
ϑ
[1/2−h/2

1/2−g/2

]
, (2.15)

valid for H,G,F ∈ Z2 and for any h,g. This remarkable identity is a reflection of the general
universality theorem that will be discussed in detail in the next section.

Returning to our threshold difference, and following [36, 37, 38, 43], one can explicitly eval-
uate the integrals to obtain [14, 15]

∆SO(16)−∆SO(12) = 72 log
[
T2U2|η(T )η(U)|4

]
− 8

3
log
[
T2U2|ϑ4(T )ϑ2(U)|4

]
+

2
3

log | j∞(T/2)− j∞(U)|4 . (2.16)

The terms in the first line are reminiscent of the threshold differences in supersymmetric vacua with
hard and spontaneous N = 4→N = 2 breaking, and indeed a careful analysis shows that even
in these non-supersymmetric vacua they are associated to the two supersymmetric sectors. The last
term, instead, comes entirely from the non-supersymmetric (disconnected) orbit of this Z2×Z2

orbifold, and the logarithmic singularity at T/2 = U reflects the emergence of the extra massless
states (2.5) at this point in moduli space. The coefficients have a clear field theoretical interpretation
in terms of differences of β -function coefficients [15]. The function j∞ is the holomorphic invariant
under Γ0(2) attached to the cusp ∞ and is related to the more familiar Dedekind function via
j∞(τ) = 24+(η(τ)/η(2τ))24.

The surprising fact is that this simple behaviour of the gauge threshold differences is not par-
ticular to this Z2 orbifold, but is actually universal and extends to any compactification where the

7
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supersymmetry preserving Z2 group is replaced by any orbifold realisation of K3 or of any Calabi-
Yau three-fold [14, 15]. The only model-dependent quantities are the numerical coefficients in
(2.16). In the next section, we shall formulate the necessary conditions that any heterotic vac-
uum, supersymmetric or not, needs to satisfy in order to display a universal behaviour of the gauge
threshold differences.

3. Gauge Threshold Universality: the general case

As anticipated in the previous section, the gauge threshold corrections for a generic, tachyon
free, heterotic vacuum are given by eq. (2.7). In this expression, the clearly non-holomorphic term
originating from the insertion of 1/τ2 in the group trace, originating from the contact term of the
two gauge-boson vertex operators, can be ascribed to dilaton exchange in a suitable degeneration
limit of the loop diagram. Since the dilaton couples universally to any gauge group factor, the 1/τ2

contribution cancels out and thus, in a generic orbifold compactification without continuous Wilson
lines, the difference of gauge thresholds takes the general form [15]

∆αβ =
∫

F
dµ ∑

h,g
L
[h

g

]
(τ)Φ̄

[h
g

]
(τ̄)Γ

[h
g

]
(G,B) , (3.1)

where the sum runs over the various sectors of the orbifold. L
[h

g

]
(τ) is an holomorphic function

of the modulus τ encoding the helicity super-trace over the left-moving sector, Φ̄
[h

g

]
(τ̄) is an anti-

holomorphic function encoding the Q2
αβ

= Q2
α −Q2

β
graded trace over the right-moving sector,

while Γ
[h

g

]
(G,B) denotes a generic Narain lattice partition function associated to shifted tori with

metric G and B-field backgrounds.
In supersymmetric compactifications, the only moduli dependence of gauge thresholds origi-

nates from those sectors preserving N = 2 supersymmetry3, which correspond to a K3×T 2 orb-
ifold. These sectors have the remarkable property that their holomorphic contribution L

[h
g

]
drops

to a constant, as a consequence of the BPS-ness of the FµνFµν coupling. Technically, this property
is the result of a cancellation between the helicity super-trace and the holomorphic contribution of
the twisted K3 lattice, so that only the left-moving ground state survives. As a result, the moduli
dependence of the threshold differences is encoded in

∆αβ =
∫

F
dµ

N−1

∑
h,g=0

(h,g)6=(0,0)

Φ̄
[h

g

]
(τ̄)Γ2,2

[h
g

]
(T,U) , (3.2)

where Γ2,2
[h

g

]
(T,U) is given by (2.2), and we allow for the possibility that the N = 4→N = 2

breaking be spontaneous, and realised via a freely acting orbifold.
The functions Φ̄

[h
g

]
(τ̄) are highly constrained by modular invariance, which is the rationale

behind the celebrated universality of differences of gauge thresholds [1, 3]. In fact, whenever the

3The untwisted unprojected sector of any supersymmetric orbifold compactification, although depending on the
moduli of the six-dimensional torus, does not contribute to the threshold since it preserves the full N = 4 supersymme-
try.
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lattice of the T 2 factorises, as in hard N = 4→ N = 2 breaking without Wilson lines, it was
realised that

Φ̄≡∑
h,g

Φ̄
[h

g

]
(τ̄) = const , (3.3)

thus yielding the celebrated result in [1]. Indeed, in this case Φ is a holomorphic function invariant
under the full SL(2;Z) modular group which is bound to be regular at the cusp τ = i∞. This last
condition is the consequence of the fact that the untwisted bosonic vacuum |0〉 of the heterotic
string is neutral with respect to the Kac-Moody currents while the charged twisted right-moving
vacua4 |n〉 are not invariant under the orbifold action. Notice that this does not necessarily imply
that each Φ̄

[h
g

]
be a constant for fixed h and g. For instance, Φ̄

[0
1

]
is only invariant under the Hecke

congruence subgroup Γ0(N), and the space of holomorphic invariant functions which are regular
at the cusp τ = i∞ is much richer. In fact, one has the general decomposition

Φ
[0

1

]
(τ) = a+ ∑

a6=∞

ba ja(τ) , (3.5)

where a and ba are constants and are the only model-dependent data. The index a labels the various
cusps of the fundamental domain FN of Γ0(N), and ja are the invariant functions attached to the
cusp a [38, 43].

The decomposition (3.5) dramatically extends the notion of universality in supersymmetric
cases, when the two-dimensional lattice is shifted and couples to Φ

[0
1

]
. In fact, it is of crucial

importance for the universality of related vacua with broken supersymmetry. To appreciate this
point, let us focus for simplicity to the Z2 realisation of K3. Upon partially unfolding F [38], one
can cast the integral (3.2) as

∆αβ =
∫

F2

dµ Γ2,2
[0

1

]
(T,U)Φ̄

[0
1

]
(τ̄)

= a
∫

F2

dµ Γ2,2
[0

1

]
(T,U)+b0

∫
F2

dµ Γ2,2
[0

1

]
(T,U) ̄0(τ̄) . (3.6)

The first integral was evaluated in [2, 46, 38] while the the second one was evaluated in [38, 43]
and, for a momentum shift along the first cycle of T 2, read

∆αβ =−(a+24b0) log
[
T2U2|ϑ4(T )ϑ2(U)|4

]
−2b0 log | j∞(T/2)− j∞(U)|4 . (3.7)

Similar expressions can be obtained also for the other orbifold realisations of K3. While the first
contribution is regular in the bulk of the (T,U) moduli space, the second one displays a logarithmic
singularity when T/2 =U , plus all their Γ0(2)U images. Therefore, a non-vanishing b0 coefficient

4Among the unphysical states particularly important for our investigation are those associated to the vacuum of the
right moving sector. These include the ubiquitous untwisted uncharged bosonic vacuum |0〉 of the heterotic string, as
well as the vacua

|n〉 ∼ σ̄n χ̄n |0〉 , n = 1 , . . . ,N−1 , (3.4)

associated to the right-moving ground states of the gn twisted sectors. σn is the standard bosonic twist field associated to
the right-moving twisted K3 coordinates and has conformal weight ∆σ = n

N (1− n
N ), whereas χn is the fermionic twist

field associated to the “twisted Kac-Moody current” and has U(1) charge Qχ = ± n
N and conformal weight ∆χ = Q2

χ

[44, 45]. We stress once more that |0〉 is neutral with respect to the E8×E8 Cartan charges, while |n〉 always carries
non-trivial charge with respect to one of these Cartan’s, at least in the case of standard embedding.
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is associated to the presence of extra massless states at these special points. The lesson to be
learnt from this discussion, is that the presence of extra charged massless states, whether they be
hypermultiplets or vector multiplets, significantly modifies the standard notion of universality of
∆αβ and extends it with the contribution in eq. (3.7).

As we shall see momentarily, this very same universal behaviour of supersymmetric gauge
thresholds also holds in heterotic models with spontaneously broken supersymmetry [14, 15], pro-
vided one considers thresholds for groups of rank larger than one, and certain specific conditions
are satisfied by the supersymmetry-breaking generators. To this end, we focus on heterotic vacua
on T 6/ΩS×ΩSB, where ΩS is a supersymmetric orbifold, while ΩSB has a free action, and is
responsible for the spontaneous breaking of supersymmetry.

The main difference with the supersymmetric case, is that now the FµνFµν coupling is no
longer BPS protected, and receives contributions from the whole tower of string states. This im-
plies that there are sectors where the helicity supertrace no longer cancels against the contribution
of the twisted lattice, and therefore the L[h

g ]’s are no longer constants for all h and g. As a result,
aside from lattice contributions, the integrand in the threshold modular integral is no longer holo-
morphic, and modular invariance fails to constrain it uniquely. Universality is recovered whenever
the Φ[h

g ] are constants for suitable values of h and g, so that the product L[h
g ]Φ[h

g ] reduces to a
holomorphic function. In this case modular invariance fixes the τ dependence of the (lattice inde-
pendent) integrand up to few model dependent coefficients.

To be concrete, let us give a closer look at the conditions required for universality. We denote
by gS and gSB generic elements of the orbifold groups ΩS and ΩSB. Clearly, L[g′S

gS
] is constant due to

the effective supersymmetry present in this orbit, and therefore yields only universal contributions
to the thresholds. However, in supersymmetry-breaking orbits L[ gS

gSB
] is no longer a constant and

thus universality is lost unless Φ[ gS
gSB

] is. In this case, modular invariance leads to the decomposition
of L[ gS

gSB
] into functions invariant under some finite index subgroup of SL(2;Z), analogously to eq.

(3.5), and universality is restored.
Which are the conditions required for this to occur? In other words, for which choices of ΩSB

are the Φ[ gS
gSB

] constant? In order to answer this question, let us recall that a generic orbifold element
g involves a separate action on the left and on the right moving degrees of freedom, and thus is
decomposable as g = γL⊗ γR. In particular, γL involves the action on the RNS sector and is the
only potential source for supersymmetry breaking. Of course, γR is not arbitrary but is correlated
to γL by modular invariance of the one-loop partition function, and typically involves an action
on the gauge degrees of freedom. We shall assume that the orbifold acts left-right symmetrically
on the six compact coordinates. As a result, γL determines the L[h

g ]’s and, most importantly, γR

determines the Φ[h
g ]’s. This simple observation allows one to find the necessary conditions for

universality to hold. Denote by gSB = γL
SB⊗ γR the decomposition of the supersymmetry breaking

generators of ΩSB. If one can replace γL
SB with a new supersymmetry preserving action γ̃L

S , while
keeping the same action γR on the right-movers

gSB = γ
L
SB⊗ γ

R→ g̃S = γ̃
L
S ⊗ γ

R , (3.8)

in a way that leads to a consistent supersymmetric string model, then the Φ[ gS
gSB

]’s are again decom-
posed as in (3.5). Therefore, in the absence of extra charged massless states in the supersymmetric

10



P
o
S
(
P
L
A
N
C
K
 
2
0
1
5
)
0
0
5

Universality in radiative corrections for non-supersymmetric heterotic vacua Carlo Angelantonj

“relative” model twisted by ΩS× Ω̃S, the ba coefficients vanish and one indeed recovers universal-
ity. We can summarise the above in the

Universality Theorem: Any non-supersymmetric heterotic orbifold T 6/ΩS×ΩSB yields a uni-
versal behaviour in the difference of gauge thresholds ∆αβ for gauge groups Gα and Gβ , of rank
larger than one, if ΩSB can be consistently replaced by a supersymmetric orbifold Ω̃S with the
very same action on the right-moving degrees of freedom, and provided no extra massless states
charged with respect to Gα ×Gβ emerge in the bulk of the moduli space of the supersymmetric
orbifold T 6/ΩS× Ω̃S.

Which are the allowed possibilities for ΩSB? Recall that in symmetric orbifold constructions,
fixing the action on the right moving sector automatically determines the action on the left movers
as well. Therefore, the latter is either compatible with supersymmetry or not, and there is no
possibility to find a γ̃L

S that turns ΩSB to Ω̃S. A careful study [15] of various possibilities leads then
to the following

Corollary: The non-supersymmetric heterotic orbifolds T 6/ΩS×ΩSB that yield a universal be-
haviour in the difference of gauge thresholds ∆αβ , for gauge groups Gα and Gβ of rank greater
than one, are of the form

ΩSB = (−1)F
δ γgauge , (3.9)

with the action on the complex fermions ψ̃a(z̄) realising the E8×E8 Kac-Moody currents J̃ab(z̄) =
iψ̃aψ̃b(z̄) at the factorised point, chosen to have the eigenvalues γgauge = e2πiλgauge

λgauge : (08;08) , (1,07;1,07) ,
(
(1/2)2,06;(1/2)2,06) . (3.10)

In these three cases, the universal form of threshold differences for non-abelian gauge groups is

∆αβ = ∑
i=1,2,3

ai log
[
T (i)

2 U (i)
2 |η(T (i))η(U (i))|4

]
+bi log

[
T (i)

2 U (i)
2 |ϑ4(T (i))ϑ2(U (i))|4

]
+ci log | j∞(T (i)/2)− j∞(U (i))|4 . (3.11)

The constants ai,bi and ci are model dependent and can be computed by the knowledge of the
massless spectrum alone.

This result extends the notion of universality, familiar from supersymmetric constructions, to
the case of heterotic vacua with (spontaneously) broken supersymmetry. The analysis of rank-
one gauge group factors is more involved. One may show that the universal expression (3.11) is
modified by an additional non-universal contribution which, however, is exponentially suppressed
with the volume of T 2. Universality is, therefore, asymptotically restored in the large T2 limit and
we refer the interested reader to [15] for more details. Significantly different is the case of models
which violate the requirements of the above universality theorem. A careful analysis reveals that
in such situations universality is unequivocably lost and cannot be restored even in large volume
limits.

We would like to conclude the discussion with a comment on issues of chirality. Clearly, the
Scherk-Schwarz mechanism seen as a freely-acting orbifold does not generate any fixed points.
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As a result, the only way for non-supersymmetric models with universality to possess also a chi-
ral spectrum of charged matter, is for the parent supersymmetric model generated by ΩS to al-
ready have this property. Given that the ΩSB orbifold does not distinguish between chirality as-
signments of spinor representations of the gauge group, one is led to conclude that the resulting
non-supersymmetric model built out of ΩS×ΩSB will indeed contain chiral matter, provided the
conditions of the universality theorem are met. An explicit example of such chiral constructions
with universality has been given in [15].
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