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1. Introduction

The latest observations from the Planck satellite [1, 2,dlficm the vanilla predictions of
cosmic inflation for the primordial curvature perturbatiarthat the latter is predominantly Gaus-
sian (non-Gaussianities have not been observed, with upperd f}9° = 0.9+ 5.7), adiabatic
(no isocurvature contribution has been observed, with uppand to less that 3%), statistically
isotropic (no statistical anisotropy has been observeth uwpper bound to less than 2%) and al-
most scale-invariant, but with a significant red titt, & 0.968+ 0.006). Moreover, the Planck
data favour canonically normalised, single-field, slow4rdlation [1]. In fact, in conjunction with
other data, Planck seems to favour an inflationary platejau [4

There have been many examples of such inflationary modds asuthe originaR?-inflation
[5], Higgs inflation [6] or T-model inflation [7]. However, nsb of these attempts consider an
exponential approach to the inflationary plateau. Here veigdea model, which approaches the
inflationary plateau in a power-law manner, offering distiobservational signatures.

2. Bottom-up versus top-down approach

In inflationary model-building one can identify two broadastgies. The top-down scenario
corresponds to designing models based on “realistic” cocisbns, for example inspired by string
theory, supergravity etc. Then, one looks for specific dignes in the data (e.g. non-Gaussianity).
Since the latest Planck data favour single-field, slowirdlation, they seem to support such rela-
tively straightforward constructions.

In contrast, the bottom-up scenario amounts to inflatiomaoglel constructions, which are
“suggested” by the data, i.e. they are data-inspire “ggésgates”. As such, this approach uses
the Early Universe as laboratory to investigate fundametigsics, in the best tradition of particle
cosmology. We adopt this strategy (see also Ref. [8]). Outehproposes a power-law approach
to the inflationary plateau in the context of global supens\atry.

3. The scalar potential for Shaft Inflation

Consider a toy-model superpotential of the fovid:= M2®"+1 /(d" + m")9, wheren, q are
real numbers anil, mare mass-scales. Hap| > m, this superpotential approaches an O’ Raifeart-
eagh formW ~ M?® leading to de Sitter inflation. Fdkb| < m, the superpotential becomes
W 0 o"4+1 |eading to chaotic inflation. To simplify it even further, wloose to eliminate the
numerator, and take= —1/n. We end up with the superpotential for Shaft Inflation [8]:

W = M2 (" m)¥/", (3.1)

To obtain the scalar potential, we consider= e, whereg, 0 are real scalar fields witp > 0.1
Then the scalar potential is:

M4 (n—1)
v . (3.2)

V — M4’¢’2(n71)‘¢n+mn‘2(%71) _ _
[@?" + M2+ 2cognB)mN | v

A normalisation factor of 1,/2 has been absorbed in the mass scales.
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The potential is minimised whar® = 2¢1, with ¢ being an integer. Further, noting thatp = @€,
we can make the potential symmetric over the oriyifigg) =V (—@)] if n=2¢, i.e. even. In this
case,

V(@) = M*@?" (g )72, (3.3)

for all real values ofp. From the above we see that the scalar potential has theeddmhaviour,
for n> 2, i.e. it approaches a constahts M* for ¢ >> m, while for ¢ < mthe potential becomes
monomial, withv 00 ¢, see Fig. 1.
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Figure 1: The scalar potential in shaft inflation for= 2,4,8 and 16. The shaft becomes sharpar geows.
Far from the origin the potential approximates the inflagignplateau withv ~ M*. Near the origin the
potential becomes monomial, as in chaotic inflation.

4. The spectral index and the tensor to scalar ratio

4.1 Slow-roll parameters,nsandr

From Eq. (3.3), we readily obtain the slow-roll parameteys a

() a0 (2) ()
= m'%VVN =2n-1) (%) 2 (fP”ann”> - 3)cplr:‘]nJr_nEr:Jr 2 (4.2)

where the prime denotes derivative with respect to the oriléield andmp = 2.4 x 1018 GeV is
the reduced Planck mass. Hence, the spectral index of thatawe perturbation is

Ne=1+2n—66=1—4(n—1) (%)

2 [(n+1)¢" + nnd7
(@+m2z

(4.3)

To rewrite the above as functions of the remaining e-foldimftdition N we have to investigate the
end of inflation. It is straightforward to see that inflatisrtérminated whefm | ~ 1 so that, for the
end of inflation, we find

Qona~ mp [2(n? — 1)a" ™2 (4.4)
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where we assumed that> m (so that the potential deviates from a chaotic monomial) w&ad
defined

a= mmp (4.5)
Using this, we obtairp(N)
¥ n+2 n+2
Ne = [ Vg ~ 1 L) (% (4.6)
M2 gV’ 2(n—1)(n+2)a" | \ mp me
n+1\1Y0+2)
= @(N) ~mp {2(n—1)(n+ 2)a" <N+m>} . 4.7)

Inserting the above into Egs. (4.1) and (4.3) respectivadyoltain the tensor to scalar rati@and
the spectral inderg as functions oiN:

n l 72(%)
F = 166 = 32(n— 1)2av2 |2(n—1)(n+2) (N + %)] ' 4.8)
n+1 n+1\ !
ns_1—2n+2<N+n+2> . (4.9)

Notice that onlyr is dependent om (througha), which means that can be affected by changing
mwithout disturbingns. We will return to this possibility later.

4.2 Examples

To investigate the performance of the model, we considetvibeextreme cases for the values
of n, namelyn = 2 andn > 1. For illustrative purposes we take= 1, i.e.m= mp.

421n=2

In this case the scalar potential becomes

@

V(p) = M4m.

(4.10)
We see that the above can be thought of as a modification ofatimdhaotic inflation, because
after the end of inflation, the inflaton field oscillates in adratic potential. However, for large
values of the inflaton the potential approaches a constdmis. pbtential has been obtained also in
S-dual superstring inflation [9] wittr = 1/4 and also in radion assisted gauge inflation [10] with
a ~ 10732 In this case, Egs. (4.8) and (4.9) become

320 3 3\ !
M=—— and Ne=1—— N+—> . 4.11
B(N+2)7? ) 2< 4 i

From the above, we find the values farandr, as shown in Table 1.



Shaft Inflation Konstantinos Dimopoulos

(N[ n | r |
50 | 0.970| 0.0039
60 | 0.975| 0.0030

Table 1: Values ofng(N) andr in the casen = 2.

422n>1
In the opposite extreme>> 1, Egs. (4.8) and (4.9) become

8a? 2
r=———-—0 and ng=1———. 4,12
(Nt 12 ; N+1 (4.12)
The spectral index is now the same as in the origRfahflation model [5] (also in Higgs inflation
[6]), which is not surprising since we expect power-law hébar to approach the exponential
whenn — «. The values of, in this case, are shown in Table 2.
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Fig. 12. Marginalized joint 68 % and 95 % CL regions for n, and oo from Planck in combination with other data sets, compared
to the theoretical predictions of selected inflationary models.

Figure 2: Shaft inflation fom = 2 is depicted with the large {small} red cross fdr~ 60 {N ~ 50}. Shaft
inflation forn > 1 is depicted with the large {small} black cross fdr~ 60 {N ~ 50}. Intermediate values
of nlie in-between the depicted points. As evident, there igbant agreement with the Planck observations.

From the above, we find that the values figrandr are very close to the best fit point for the
Planck data for all values af, as shown in Fig. 2.

2The crosses are superimposed to the original Planck pagereintaken from Ref. [1], which includes also the
original caption.
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50 | 0.961
60 | 0.967

Table 2: Values ofng(N) in the casen > 1 (wherer ~ 0).

In| n [r(a=1)|r(a=2/81~10 | r(a=5/8m~25) |

2] 0.975| 0.0030 0.0299 0.0747
41 0.973| 0.0008 0.0168 0.0570
6| 0.971| 0.0003 0.0089 0.0352
8| 0.970| 0.0001 0.0052 0.0227

Table 3: Values ofns andr for N = 60 andn = 2,4,6,8. Three choices oft = m/mp are depicted, which
correspond tan = mp, m= 2Mp andm = 5Mp, whereMp = v/8mmmp. It is shown that, withm mildly
super-Planckiarr, can approach the observational bound 0.1 without affectingns.

5. Gravitational waves

Planck observations, in conjunction with BICEP2 and Keckafrdata suggest< 0.1 [11].
As we have seen, in Shaft Inflation[J a2V ("2 while there is nax-dependence afs. Thus, by
changingm, r can vary without affecting the spectral index (c.f. Eq. [4.5Therefore, sizeable
tensors can be attained by widening the shaft in field spawgeed, renderingn mildly super-
Planckian can produce potentially observable values @$ shown in Table 3, where Eq. (4.5)
suggests thah= amp = \/%‘(MP’ with Mp = 1.2 x 10°GeV being the Planck mass. Thus, we see
that withm ~ 5Mp we can have ~ 0.07, which is on the verge of observability. This is shown
clearly in Fig, 3.

6. More on Shaft Inflation

The running of the spectral index is easily obtained as

dns B 2 %) 6.1)
dink (N + 222 2’ '
+02)
In the two extreme cases, this gives
neg. s _ 3 = —4.064x 107 6.2)
dink 2(N+ %)
d 2
N> 1: o — _5375x 10" 6.3)

dink ~ (N+1?2

where the numerical values correspondite- 60. Thus, for all values af, we the above suggests:
e ~ —(4—5) x 104, which is in agreement with the Planck findingi% = —0.003- 0.007.
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Figure 3: Shaft inflation predictions foN = 60. The crosses in the image correspondte 2,4,6,8
as depicted from right to left. Black crosses correspond to 1 (m= mp), red crosses correspond to
a =2/8m~ 10 (m=2Mp) and yellow crosses corresponddo= 5v/81m~ 25 (m=5Mp). It is evident
that, for mildly super-Planckian valueswfthe model predictions lie at the verge of observability.

Finally, the inflationary scale is determined by the COBEstmint

G 1 v o
T 2 BTmV/|’ '

where &; = (2.20840.075) x 102 is the spectrum of the curvature perturbation [2]. This pro-
vides an estimate for the required valuevbf

<M>2 — 43— Va7, [z<n_1><n+z><N+il)]_m. (6.5)

mp n+2

For illustrative purposes, using/Z7; ~4.7x10°, n=2,a =1 (i.e. m=mp) andN = 60 we
find M = 7.7 x 10*°GeV, which is very near the scale of grand unification, as ebgoe

7. Conclusions

Planck data favour single-field, slow-roll inflation, chetexised by a scalar potential which
approaches an inflationary plateau. In contrast to many atihecessful models, Shaft Inflation
approaches this plateau in a power-law manner. Shaft lorfl&gibased on a simple superpotential:
W = M2 (®"+ m")¥". without any fine tuningrfi~ mp andM ~ 10*6GeV, i.e. the scale of grand
unification) Shaft Inflation produces a scalar spectrabinagy close to the Planck sweet spot with
very small (negative) running, in agreement with Planckndgingm mildly super-Planckian one
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can easily obtain potentially observable tensors withdigiciing the spectral index. The chal-
lenge in now to obtain realistic setups which can realise(deeeptively) simple Shaft Inflation
superpotential.
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