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The existence of moduli fields is generic in string/supergravity theories. The vacuum misalign-
ment of moduli fields in inflationary and post-inflationary vacua usually leads to a matter domi-
nated epoch in the post-inflationary history of the Universe. This modification in the evolutionary
hierarchy of the Universe implies that the preferred range in the number of e-folds Nk between
the horizon exit of relevant modes in the CMB and the end of inflation is a function of moduli
masses. As a result the CMB observables become sensitive to moduli masses. We have studied
this sensitivity for some representative inflationary models using PLANCK 2015 data.
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1. Introduction

Theory of inflation is the leading candidate in describing the early universe cosmology. Ob-
servationally it has received much support from the precision CMB measurements. The future
experiments are geared towards pinning down the strength of tensor-to-scalar ratio with greater ac-
curacy. Nevertheless, inflationary theory faces several challenges. The notable one is the sensitivity
of the slow-roll conditions on ultra-violet degrees of freedom. Therefore, it requires considerations
of inflation in a full theory of quantum gravity [1, 2, 3], and string theory is one such framework to
address this problem.

A generic feature of string theory is the existence of moduli fields which have Planck sup-
pressed couplings to the low energy degrees of freedom. The minima of the modulus fields during
inflation and after inflation are usually separated by a field range of order Planck mass. Due to this
vacuum misalignment of moduli fields, there exists a possibility of non-standard post-inflationary
cosmological timeline dominated by the oscillations of the cold moduli particles. After the decay
of moduli fields, the history of the universe becomes thermal.

The aim of our work is to study the sensitivity of inflationary observables scalar spectral index
(ns) and the tensor-to-scalar ratio (r) to the mass of the lightest modulus for some familiar infla-
tionary models [4]. The basic strategy is following: Given a model of inflation one can express
ns and r in terms of the number of e-folds Nk between the horizon exit of the observational scales
in the CMB and the end of inflation. A knowledge of Nk then provides us the predictions of ns

and r. In standard cosmological history of the Universe where inflation is followed by reheating
producing radiation domination and subsequent matter domination, the preferred range for Nk is
55±5. The ambiguity of ∆N = ±5 arises mainly due to our poor understanding about the details
of the reheating epoch. Incorporation of the modulus dominated epoch at the end of reheating
alters the preferred range to Nk = (55− 1

4 Nmod)± 5, where Nmod being the e-folds of modulus
domination that depends on the mass of the lightest modulus mϕ [5, 4]. Therefore, the predictions
for an inflationary model for ns and r will be related to the mass of the lightest modulus through
their dependence on Nk. Treating mϕ as a free parameter and using PLANCK 2015 data [6], we
will study this sensitivity for four representative models of inflation: quadratic potential [7], axion
monodormy [8], natural inflation [9] and Starobinsky inflation [10]. The results turn out to be in-
teresting as the predictions of the models change considerably when the modulus dominated epoch
is taken care properly.

2. Modular cosmology in brief

Moduli are massless scalar fields that occur naturally in many string compactifications. Their
interactions to other particles are suppressed by the Planck scale. The moduli usually have con-
tributions to its masses during inflation that vanishes when inflation ends. Therefore the moduli
get stuck at its local minima with its inflationary mass larger than the Hubble sale during inflation
Hin f . For a modulus whose post-inflationary mass mϕ is less than Hin f , the field starts to move to
its global minima when the Hubble constant becomes smaller than mϕ - leading to coherent oscil-
lations of the moduli fields. Typically the initial amplitude of the oscillations are of the order of
Planck mass [11, 12, 13, 14, 15]. At the end of inflation the universe reheats from the decays of
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inflaton, and the total energy density consists of two components: radiation from the reheating, and
the oscillation energy of the displaced modulus. The energy density of the modulus oscillations
decreases as a non-relativistic matter, and starts to dominate over the radiation density soon. The
duration of this epoch is governed by the life time of the modulus τmod ' 16πM2

pl/m3
ϕ . After the

decay of the modulus the universe reheats once again, and there from the history of the Universe
becomes thermal. In modular cosmology, we have the following evolutionary hierarchy: infla-
tion, reheating (from inflaton decay), radiation domination, modulus domination, reheating (from
modulus decay), matter domination, and finally accelerated expansion of today.

Now the total energy density ρk when a cosmologically relevant perturbation of comoving
wave number k exits the horizon, must be evolved to the present day energy density ρ0. The later
is known from the CMB observations. Any theoretical proposal that one ascribes to the history
of the universe must be consistent with the above condition. This criterion gives us the following
consistency relation for the modular cosmology [5]

Nk ≈
(

55.43− 1
4

Nmod

)
+

(
1
4
(1−3wre1)Nre1 +

1
4
(1−3wre2)Nre2

1
4

lnr+
1
4

ln(ρk/ρend)

)
, (2.1)

where Nre1,wre1 are the e-folds number and effective equation of state parameter of first reheating
phase respectively, Nre2,wre2 are the corresponding quantities for second reheating phase and ρend

is the energy density at end of inflation. Form Eq. (2.1), the preferred range Nk turns out to be,

Nk =

(
55− 1

4
Nmod

)
±5 , with Nmod ≈

4
3

ln
(√

16πMplY 2

mϕ

)
. (2.2)

Here Y is the initial displacement of the modulus in Planck unit1. Thus we see that the central
value of Nk is lowered by (Nmod/4), and it is determined by the modulus mass mϕ and the initial
displacement Y .

3. Predictions for various inflationary models

Here we will be studying the phenomenological implications of the existence of modulus
dominated epoch on various inflationary models. We let mϕ to be a phenomenological parameter
between 103 TeV < mϕ < 108 TeV and take Y ∼ 0.1Mpl . The lower bound for the mass is set by the
cosmological moduli problem (CMP) bound i.e. mϕ > 30TeV for successfull nucleosynthesis [16,
17, 18]. The upper bound is set from the numerical solution of the following condition

mϕ < Hk, where Hk =
π√
2
(rAs)

1/2Mpl, (3.1)

and it usually turns out to be mϕ ∼ 1010TeV . Here As is the amplitude of curvature perturbation.
Since r decreases with Nk, the aforesaid condition can be implemented over the entire range of Nk

if it holds for the maximum value Nmax = 60− 1
3 ln(
√

16πY Mpl/mϕ).
With these considerations, we have finally evaluated the predictions for ns and r for m2χ2,

axion monodormy, natural inflation and Starobinsky inflation taking mϕ = 103,106 and 108 TeV.
The resuts are shown in Fig.(1). The shaded regions are 1-σ and 2-σ contours of PLANCK 2015

1Y can be explicitly computed in the full high energy theory that embeds inflation. We take Y as a free parameter.
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Figure 1: Inflationary predictions for m2χ2 (black), Natural/pNGB inflation (purple), Axion monodromy
(green), Starobinsky model (red) for cases of no misalignment (mϕ > Hinfl), mϕ = 103,106,108 TeV.

TT + low P [6]. We see that for the entire preferred range, the Starobinsky model lies within 1-σ
contour. However, for the heavy modulus 108 TeV the m2χ2 is outside the 2-σ , while the axion
monodromy enters in the 1-σ for mϕ below 105TeV . For gravity mediated SUSY breaking models,
our results correlate the inflationary predictions to the scale of SUSY breaking since mSUSY ∼ mϕ .

4. A bound on modulus mass

Using the consistency relation of Eq. (2.1), and assuming non-exotic reheating phases, i.e.
wre1,wre2 < 1/3 [19, 20], we can get a lower bound on the modulus mass

mϕ &
√

16πMplY 2e−3
(

55.43−Nk+
1
4 ln(ρk/ρend)+

1
4 lnr

)
. (4.1)

If the modulus mass is lower than the above bound, it decays too late in eating up larger number
of e-folds that violates the consistency conditions. The above formula is applicable only for mϕ <

Hin f . Taking observational inputs of ns, Nk can be computed for a given inflationary model. With
PLANCK 2015 central value of ns we found that the bound is incompatible for m2χ2 model of
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Figure 2: Bound on the modulus mass for small field models. The allowed values of mϕ are in the region
above the shaded plane.

inflation. For axion monodormy models the bound is far below the CMP bound. For small field
models, Fig. (2) shows the allowed range in mϕ with varitaions of Nk and r. It shows that the bound
is essentially determined by Nk. For Nk & 44.5 the bound is stronger than CMP bound.

5. Conclusion

The motivation of our work is to study the sensitivity of inflationary observables with the mass
of the lightest modulus where post-inflationary epoch is dominated by the coherent oscillations of
the modulus field. We have kept the modulus mass as a free parameter and worked with a generic
value for initial modulus displacement at the end of inflation. Based on this phenomenological
approach the results will have broad implications. It suggests the importance of taking care of the
modulus dominated epoch in computing the relevant e-folds Nk of inflation. In future experiments
[21], the uncertainty in measurement of ns is expected to reduce by an order of magnitude, and
the dependence of modulus mass on observable predictions is crucial. In addition, this study also
encourages us to address the issue of explicit computation of initial displacement of the modulus
for specific models in a full UV theory.
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