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1. Introduction

Our goal is ambitious: to construct a theory of gravitation, and gravitational interactions,
which is both scale invariant (in the classical approximation), and Ultra-Violet (UV) complete by
virtue of the fact that all the coupling constants in the theory are asymptotically free. The tool for
this is Dimensional Transmutation (DT); which refers to the fact that there are field theories with no
explicit mass parameter which nevertheless have a massive spectrum (which may be complicated)
generated by radiative corrections. There are two types of DT:

• Non-perturbative: for example Massless QCD

– Chiral symmetry breaking and confinement are triggered by the large value of the strong
coupling αs.

• Perturbative

– Scalar QED (Coleman-Weinberg) [1]

– R2 Gravity [2]-[11]

2. Dimensional Transmutation in Perturbation Theory

The effective potential V (φ) is the leading term in a derivative expansion of the 1PI effective
action, Γ(φ):

Γ(φ) =−V (φ)+ f (φ)∂ µ
φ∂µφ + · · · (2.1)

Let us begin by considering the simplest possible theory: massless λφ 4. Including one-loop cor-
rections the potential is given by

V (φ) =
λ

4!
φ

4 +
κ

4

(
1
2

λφ
2
)2

ln
φ 2

µ2 (2.2)

where κ = (16π2)−1 and µ is the renormalisation scale. Notice that V is not analytic in φ .

2.1 The False Minimum

V (φ) =
λ

4!
φ

4 +Bκφ
4 ln

φ 2

µ2 , where B =
λ 2

16
. (2.3)

Consider the dependence of V on φ for fixed µ , λ > 0. Clearly V → 0 as φ → 0, and V → ∞ as
φ → ∞. Moreover V clearly has a minimum for nonzero φ , where

κλ 2

4
ln

φ 2

µ2 =−λ

6
− κλ 2

8
. (2.4)
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Normally we are happy with perturbation theory if the coupling constant is "sufficiently" small.
But here even if λ is small we see that the one loop correction to the potential is comparable to the
tree term, a classic sign that we cannot trust the result.

2.2 RG Evolution

Of course what we forgot above is that λ depends on µ:

µ
∂λ

∂ µ
= βλ (λ ) = 3κλ

2 with solution λ (t) =
λ0

1−3κλ0t
, (2.5)

where t = ln(µ/µ0). Moreover V (φ) satisfies a RG equation:[
µ

∂

∂ µ
+βλ (λ )

∂

∂λ
− γ(λ )φ

∂

∂φ

]
V (φ ,λ ,µ) = 0, (2.6)

whence we have β
(1)
λ

= 48κB = 3κλ 2. So we could have used β
(1)
λ

to calculate B.
We can solve the RG equation, but the essentials of the result are given by simply deciding that

we will evaluate V choosing µ = φ . Then, as long as λ (t) is small, we have to a good approximation

V =
1
4!

λ (t)φ 4 =
1
4!

λ0

1−3κλ0t
φ

4 with now t = ln
φ

µ0
. (2.7)

We still have V → 0 as φ → 0, but now there is no sign of the (spurious) minimum; V increases
monotonically with φ . As φ increases above µ0, eventually λ reaches a Landau pole but of course
we cannot evaluate V confidently once λ (t)>> 1.

2.3 Dimensional Transmutation

We can reach the same conclusion in a different way.

V (φ) =
λ

4!
φ

4 +Bκφ
4 ln

φ 2

µ2 . (2.8)

Now instead of µ = φ let’s pick µ = 〈φ〉 where 〈φ〉 is defined as a function of λ and µ by the
equation ∂V

∂φ
= 0. Plugging this into Eq. (7) we at once get the relation

〈φ〉3
(

λ

6
+2Bκ

)
= 〈φ〉3

(
λ

6
+

κλ 2

8

)
= 0. (2.9)

Notice that we can have a 〈φ〉 6= 0 solution if λ = −4/(3κ). Unfortunately this is is (a) negative
and (b) large. It is clearly unphysical; although not because it is negative, as we shall see when we
consider SQED.

2.4 Massless SQED

The one-loop V for massless scalar QED in the Landau gauge is:

V (φ) =
λ

4!
φ

4 +κ(
5

72
λ

2 +
3
4

e4)φ 4 ln
φ 2

µ2 . (2.10)
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If we once again choose µ = 〈φ〉 then we find the condition

λ

6
+κ(

5
36

λ
2 +

3
2

e4) = 0. (2.11)

This differs crucially from the ungauged case. We can have |λ |,e� 1 with λ ∼ −κe4 so that
Eq. (11) is perturbatively believable: we can easily see that higher loop effects will be smaller. But
what about λ < 0? Is V unbounded?

The crucial point is that it only makes sense to set µ = 〈φ〉 for values of φ near 〈φ〉. To look
at V for φ >> 〈φ〉 we must revert to our previous method of choosing µ ∼ φ . Then, as in the
ungauged case, we see that (as long as λ (µ) and e(µ) are both small, the potential is given to a
good approximation by

V (φ) =
λ (φ)

4!
φ

4, (2.12)

but now the RG evolution of λ is quite different from the ungauged case. Crucially, λ can be
negative at small φ and positive at large φ . So we can have λ < 0 at the extremum but also a
bounded V .

We have the RG equations:

dλ

dt
= κ

(
10
3

λ
2−12λe2 +36e4

)
, (2.13)

de
dt

=
1
3

κe3. (2.14)

If we write Y = λ/e2 then
dY
dt

= κe2(
10
3

Y 2− 38
3

Y +36). (2.15)

The quadratic on the RHS is always positive; so as t→±∞,Y →±∞. Hence as t→∞, λ →∞; for
negative t we need to solve the equation for Y , which is not too difficult.

The solution is

e2 =
e2

0

1− 2
3 κte2

0
, (2.16)

λ =
e2

10

[√
719tan

(
1
2

√
719ln(e2)+θ

)
+19

]
. (2.17)

Here θ is a constant chosen so that λ = λ0 when t = 0. We see that as t→ ∞, λ → ∞ (at a finite t
value) so that V (φ)→ ∞ as λ approaches a Landau pole. As t →−∞, λ →−∞, but V → 0 since
as t →−∞, φ → 0. Perturbation theory breaks down at both t →±∞, but there is an intermediate
region where it is possible to have λ ≈−9κe4 (so as to satisfy Eq. (2.11)) and hence a perturbatively
credible extremum, which as we shall now see is a minimum.

2.5 The Higgs mass

We had (for κλ << 1)

V (φ) =
λ

4!
φ

4 +Bκφ
4 ln

φ 2

µ2 , (2.18)
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and setting ∂V
∂φ

= 0 with µ = 〈φ〉 we found λ +12κB = 0. It is easy to show that

m2
H =

∂ 2V
∂φ 2 = 8κB〈φ〉2 ≈ 6κe4〈φ〉2 = 3α

2π
m2

W , (2.19)

where mW is the gauge boson mass.
In the Standard Model, this fails since B < 0 due to the top quark Yukawa coupling contribu-

tion, as we now demonstrate.

2.6 The Standard Model Case

As in the previous examples we have a potential of the form

V = φ
4
[

λ

4!
+Bκ ln

φ 2

µ2

]
, (2.20)

where if we choose µ = 〈φ〉 then we get

λ +12κB = 0 and m2
H = 8κB〈φ〉2. (2.21)

Now in the SM,

B =
1
12

λ
2 +

3
64

(
3g4 +2g2g′2 +g′4

)
− 3

2
h4, (2.22)

where h is the top quark Yukawa coupling.
Now h∼ 1, g∼ 0.64, g′ ∼ 0.36 so

B =
1
12

λ
2−1.4. (2.23)

The extremum condition λ + 12κB = 0 has solutions, λ ∼ 0.05,−158. In the first, B < 0 and
the extremum is a maximum. In the second, the extremum is a minimum and mH ∼ 2.5TeV, but
manifestly this is not believable; in fact we are back in the same situation as the pure λφ 4 case.
(Occasional claims to the contrary in the literature notwithstanding: they are incorrect).

In their original paper[1], Coleman and Weinberg (CW) had h = 0, whereupon B = 1
12 λ 2 +

0.0295. The extremum condition then had the sound solution λ ∼ −12κ × 0.0295, so B > 0,
predicting mH ∼ 9.5GeV.

3. Quantum Gravity

The obvious (naïve) treatment of Einstein-Hilbert gravity is to expand the metric about a flat
(Euclidean or Minkowski) background

gµν(x) = ηµν +
hµν

MP
, (3.1)

so that

S =
∫

d4x
√

gM2
PR∼

∫
d4x
(

MP�h+h�h+
1

MP
h2�h+ · · ·

)
. (3.2)

The number of terms increases very rapidly, and more so if we expand about a more general back-
ground, ηµν → gB

µν .
The theory is very non-renormalisable because there are hn vertices for all n and each has two

derivatives. But obviously from an effective field theory point of view we are in good shape as long
as ��M2

P

5
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3.1 R2 Gravity

In the Effective field theory spirit we might decide to write

S =
∫

d4x
√

g
(

M2
PR+αR2

µνρσ +βR2
µν + γR2 +O(R3/M2

P)
)
, (3.3)

where α,β ,γ are dimensionless. Clearly for momenta�MP, the R2 terms are small corrections.
Or we might entertain the possibility that the theory

S =
∫

d4x
√

g
(

M2
PR+αR2

µνρσ +βR2
µν + γR2

)
+Smatter, (3.4)

(or even a scale invariant theory without the R term) is UV complete.
Both the R+R2 and the R2 theories are renormalisable, but have unitarity "issues":

M2
PR+R2 ∼ h�h+h�2h/M2

P + · · · (3.5)

so the propagator is like
M2

P

M2
Pk2 + k4 ∼

1
k2 −

1
k2 +M2

P
(3.6)

and we see a “wrong-sign” propagator, as in the Lee-Wick model[12].

3.2 The basic model

The theory we shall study is

S =
∫

d4x
√

g
(

1
2a

C2
µνρσ +

1
3b

R2 + cG
)
+Smatter, (3.7)

where C is the Weyl tensor and G is the Gauss-Bonnet term which is a total derivative:

C2
µνρσ = R2

µνρσ −2R2
µν +

1
3

R2, (3.8)

G =
1
4

ε
κλαβ

εµνγδ Rµν
αβ Rγδ

κλ = R2
κλ µν

−4R2
µν +R2. (3.9)

We introduce a single scalar field φ and

Smatter =
∫

d4x
√

g
[

1
2
(∇φ)2 +

λ

4
φ

4− ξ φ 2

2
R
]
. (3.10)

S is invariant under the scale transformation φ(x)→ eαφ(x), gµν(x)→ e−2αgµν(x).

3.3 Remark on the A-theorem

In fact, the β -function βc represents a generalisation to the quantised R2-gravity case of the
Euler anomaly coefficient, and thus a candidate for an A-function as proposed by Cardy[13], mani-
festing a 4-dimensional c-theorem. (For a recent discussion see Ref. [10].) Results for this anomaly
coefficient (without quantising gravity) at 3-5 loops have been calculated [14], [15]. At one loop in
our case we have

βc =−
196
45
− 1

360
[
N0+11N1/2+62N1

]
(3.11)

where N0 etc represent the number of scalar, fermion and vector fields.
An aside: it is easy to show that an A- function exists in d = 3 renormalisable Chern-Simons

theories [16].
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4. Dimensional Transmutation

Our goal now is to show that the gravitational couplings can play the same role as the electro-
magnetic coupling in SQED, so that φ develops a vev. Then ξ 〈φ〉2R becomes the Einstein term.

We will also show that there is a region of parameter space such that all the couplings are
asymptotically free, so that the model can be UV complete.

4.1 Equations of Motion

The equations of motion for φ and the trace of the one for the metric are

−ξ φR−�φ +λφ
3 = 0, (4.1)

−ξ φ
2R+(∇φ)2 +λφ

4 = �

(
4
b

R−3ξ φ
2
)
. (4.2)

It is easy to see that these are compatible for φ constant and, defining r = φ 2/R,

r = r0 = ξ/λ . (4.3)

We will assume a maximally symmetric space, such that

Rµνρσ =
1

12
R
(
gµρgνσ −gµσ gνρ

)
. (4.4)

The classical action then becomes, with
∫

d4x
√

g≡ V4
R2 , V4 being a dimensionless volume element:

S/V4 =
b
3
+

c
6
+

λ r2

4
− ξ r

2
=

b
3
+

c
6
− ξ 2

4λ
. (4.5)

Of course
∂S
∂ r

∣∣∣
r=r0

= 0. (4.6)

We shall refer to imposition of Eq. (4.6) as “going on-shell”.

4.2 Radiative corrections

We will assume that the metric remains maximally symmetric and consider radiative correc-
tions to the action for constant (R,φ):

Γ(λi,r,ρ/µ) = S(λi,r)+B(λi,r) log(ρ/µ)+
C(λi,r)

2
log2(ρ/µ)+ . . . , (4.7)

where ρ =
√

R and λi stand for the dimensionless couplings. We seek the extremum of Γ with
respect to r,ρ choosing µ = 〈ρ〉= v at the extremum. Then

∂

∂ r
Γ(λi,r,ρ/µ)

∣∣∣
r0,v

=
∂

∂ r
S(λi,r)

∣∣∣
r0,v

= S′
∣∣∣
r0,v

= 0, (4.8a)

ρ
∂

∂ρ
Γ(λi,r,ρ/µ)

∣∣∣
r0,v

= B(λi,r)
∣∣∣
r0,v

= 0. (4.8b)

These results are exact to all orders in the loop expansion! Thus the conditions for an extremum
involves a relation among the dimensionless couplings, valid at a specific renormalisation scale
µ = v. The relation Eq. (4.8b) is analagous to Eq. (2.11) in the SQED case, except that there is no
tree contribution in Eq. (4.8b). It must be emphasised (because of misleading claims to the contrary
in the literature) that this sort of relation only holds at a SPECIFIC rnormalisation scale, and the
consequences of assuming that it is RG invariant are entirely spurious.

7
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4.3 Stability

The matrix of second derivatives of the action is determined by

∂ 2

∂ r2 Γ(λi,r,ρ/µ)
∣∣∣
r0,v

=
∂ 2

∂ r2 S(λi,r)
∣∣∣
r0
, (4.9a)

ρ
∂ 2

∂ r∂ρ
Γ(λi,r,ρ/µ)

∣∣∣
r0,v

=
∂

∂ r
B(λi,r)

∣∣∣
r0
, (4.9b)

ρ
2 ∂ 2

∂ρ2 Γ(λi,r,ρ/µ)
∣∣∣
r0,v

=C(λi,r0). (4.9c)

This matrix has two eigenvalues ϖi that may be approximated as

ϖ1(r0,v) =
S
′′

2
+O(h̄2), ϖ2(r0,v) =

1
2

[
C2−

(B′1)
2

S′′

]
+O(h̄3), (4.10)

where B1,C2 are the leading contributions to B,C respectively. So ϖ1 = λ (v)/2 , and ϖ2, although
of order h̄2, can in fact be determined by one-loop results, using the Renormalisation Group.

4.4 The Renormalisation Group

Both B1 and C2 can be found via the Renormalisation Group in terms of the one loop β -
functions. In a "Landau"-type gauge we have

[
γρ

∂

∂ρ
−µ

∂

∂ µ

]
Γ(λi,r,ρ/µ) = (1+ γρ)ρ

∂Γ

∂ρ
=

[
βλi

∂

∂λi
− γrr

∂

∂ r

]
Γ(λi,r,ρ/µ). (4.11)

On shell we have

βλi

∂

∂λi
Γ(λi,r,ρ/µ)

∣∣∣
r0,v

= 0, (4.12)

But to determine B1 and C2 we need to apply the RG off-shell, giving

B1(λi,r) = β
(1)
λi

∂

∂λi
[S(λi,r)]− γ

(1)
r rS′(λi,r), (4.13a)

B′1(λi,r) = β
(1)
λi

∂

∂λi
S′(λi,r)− γ

(1)
r

∂

∂ r

(
rS′(λi,r)

)
, (4.13b)

C2(λi,r) =
[

β
(1)
λi

∂

∂λi
− γ

(1)
r r

∂

∂ r

]
B1(λi,r). (4.13c)

4.5 The RG solution

On-shell (that is, imposing Eq. (4.6)), it turns out that (unlike B′1 and C2 individually) both B1

and ϖ2 are independent of γr
1:

B1(λi,r0) = β
(1)
λi

∂

∂λi

[
S(λi,r)

]∣∣
r0,v

, (4.14)

ϖ2 =
1
2

[(
β
(1)
λi

∂

∂λi

)2[
S(λi,r)

]
− 1

S′′

(
β
(1)
λi

∂

∂λi
S′(λi,r)

)2
]∣∣∣

r0,v
(4.15)

recall that

ϖ1 = λ (v)/2 (4.16)
1This was inevitable since on-shell they represent physical quantities, while γr is gauge dependent

8
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5. The β -functions and the Fixed Points

It is useful to introduce variables x = b/a, y = λ/a and du = κadt = κad(ln µ), where 1/κ ≡
16π2. Then at one-loop, as well as

da
dt

=−799
60

κa2,
dc
dt

=−523
120

κ; (5.1)

we have [8]:

dx
du
≡ β x =−

10
3

[
1− 1099

200
x+

1
8

x2 +
1
80

(1+6ξ )2 x2
]

; (5.2a)

dξ

du
≡ β ξ = (6ξ +1)y+

ξ

6

(
20
x
− x(6ξ +1)(3ξ +2)

)
; (5.2b)

dy
du
≡ β y = 18y2 + y

(
1099

60
− 1

2
x(1+6ξ )2

)
+

ξ 2

8
(20+(6ξ +1)2x2). (5.2c)

The system of β -functions has some fixed points, shown in Table 1.

x ξ y Nature
1. 39.78082 0 0 UV stable
2. 0.18282 0. 0. IR stable
3. 0.18292 .083150 −1.005218 saddle point
4. 36.9666 .058999 .787391 saddle point
5. 43.7762 −.16404 −1.01350 saddle point
6. 43.7770 −.165507 −.00377560 saddle point

Table 1: Fixed Points

Remarkably, one of the fixed points with y = ξ = 0 is UV stable (it is easy to see that a FP
with y = 0 must have ξ = 0). Since a is AF, this FP corresponds to AF for all the couplings
(a,b,c,ξ ,λ ). With regard to the IR stable FP, note that in approaching it from any starting values
of the couplings, one would eventually lose perturbative believability since in the IR the coupling
“a” approaches a Landau pole.

5.1 The solution for B1 = 0

Recall we showed that a CW extremum of the potential corresponds to B = 0. We find for
B(os)

1 (that is, B1 on-shell) the following expression:

B(os)
1 = 1

240x2y2

(
1620x4ξ 6 +540x4ξ 5 +45x4ξ 4−4320x3ξ 4y

−360x3ξ 3y+60x3ξ 2y+900x2ξ 4 +2880x2ξ 2y2 +1800x2ξ 2y

−480x2ξ y2−826x2y2−2400xξ 2y−2400xy2 +1600y2
)
, (5.3)

which can (remarkably) be rewritten as follows:

B(os)
1 = 12(X +

1
4
)2 +

20
3
(Y +

3
4
)2− 291

40
, (5.4)

9
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-1.0 -0.5 0.5
X

-1.5

-1.0

-0.5

Y

-1.0 -0.5 0.5
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-1.5

-1.0

-0.5

Y

Figure 1: The B1 = 0 ellipse.

in terms of new variables X = ξ
′
z′ and Y = z′/x, where z′ = z−1, ξ ′ = ξ +1/6, and z≡ 3xξ 2/(4y).

Thus points with B1 = 0 lie on an ellipse. The space of solutions of B1 = 0 corresponding to a stable
minimum is quite large.

In Fig. 1 we show the ellipse defined by Eq. (5.4). The two quadrants Y,X > 0 and Y,X < 0
are distinguished because they correspond to X/Y > 0 which is necessary to obtain ξ > 0 at the
DT extremum; necessary in turn to obtain the correct sign for the induced Einstein-Hilbert term.
In Fig. 2(a,b) we show the ranges of (x,X ,Y ) with ξ > 0 and then with ϖ2 > 0 as well. Finally
in Fig. 3(a,b) we give examples of how the couplings run, starting from near the UVFP and then
running down in the hope of entering the region where DT occurs. In fact, in Fig. 3(a) the couplings
run towards the IRFP, whereas in Fig. 3(b) y becomes negative and approaches a singularity.

The bad news is that although there is a substantial region of parameter space corresponding
to a local minimum, the basin of attraction of the only UV stable fixed point does not include this
region in which DT minima occur.

6. Towards a realistic theory

Consider SO(10) with an adjoint scalar representation and a set of n f 10-dimensional two-
component (or Majorana) fermion representations. The scalar potential is

V =
λ1

24
(φ a

φ
a)2 +

λ2

24
TrΦ4, Φ = φ

aRa (6.1)

where we choose Ra to be the matrix representation of the group generators in the fundamental
representation, with

Tr
[
RaRb

]
=

1
2
. (6.2)

10



P
o
S
(
P
L
A
N
C
K
 
2
0
1
5
)
0
6
1

Quantum Gravity and Dimensional Transmutation Tim Jones

(a) ξ > 0.

(b) ξ ,ϖ > 0.

Figure 2: B1 = 0 with constraints.

11
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(a) x = 38.03,ξ = 0.0362,y = 0.458 (b) x = 39.27,ξ = 0.0106,y = 0.126

Figure 3: Running couplings down from near the UVFP.

In the gauge theory case it is better to rescale the couplings with g2 rather than a so we define
xi = λi/g2, ā = a/g2 and du = g2dt. Then the β -functions are

β x1
=

53
3

x2
1 +

19
12

x1x2 +
1
32

x2
2 +(bg−48)x1 +27+3∆β1 + x1∆β2 (6.3a)

β x2
= 4x1x2 +

19
24

x2
2 +(bg−48)x2 +72+ x2∆β2 (6.3b)

β ξ = (ξ +
1
6
)(

47
3

x1 +
19
24

x2−24)+∆βξ (6.3c)

where the gravitational contributions are:

β a =ā(bg−b2ā) (6.4a)

β w =ā(
10
3

w2− 183
10

w+
5
12
− 1

60
w(585+30n f )+

15
8
(6ξ +1)2) (6.4b)

∆β1 = ξ
2(5+

1
4w2 (6ξ +1)2)ā 2 (6.4c)

∆β2 = (5− (1+12ξ +36ξ
2)/2/w)ā ; (6.4d)

∆βξ = ξ (
10
3

w− (9ξ
2 +15ξ/2+1)/3/w)ā . (6.4e)

Here bg = 28− 2
3 n f is (minus) the one loop gauge β -function coefficient and b2 = 461

20 + 1
2 n f is

(minus) the βa-function coefficient. Obviously in the UV the coupling ā approaches the fixed
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point ā = bg/b2. We have included n f sets of 10-dimensional representations of two-component
fermions, which we assume have no Yukawa couplings to Φ.

6.1 Fixed Points

In this model we find, (with n f = 41 so as to produce a small value of bg, bg = 2/3) four fixed
points. (Here we define x = 1/w). Fixed point No. 1 is UV attractive; the other three are saddle

x ξ ′ x1 x2

1. 116.45 −.11955×10−4 1.02645 1.723027
2. 116.45 .817525×10−4 1.4694 1.80214
3. .68769×10−1 .103897 1.469455 1.8021408
4. .68701×10−1; −.21299667×10−1 1.0264541 1.7230271

Table 2: SO(N) Fixed Points

points. So our first criterion for a successful model is fulfilled.
The next step: we have indeed shown that, as in the basic model, there is a region of parameter

space such that Φ acquires a vev via DT. In this case, the vev breaks the SO(10) symmetry so as
to leave unbroken the maximal subgroup SU(5)⊗U(1). However, we have not yet established
whether for this (or any other) model there is DT in the catchment basin of a UV Fixed Point.

7. Summary and Outlook

• Dimensionless transmutation can give a non zero 〈φ〉 in a theory with scalar fields coupled
to R2 gravity, and hence generate an Einstein term in the “low energy” theory.

• In the simplest model the basin of attraction of the only UV stable fixed point does not
include the region in which DT minima occur, so in this region the theory becomes strongly
coupled or must be modified at high scales.

• More complicated models might remedy this, and also the nonzero 〈φ〉 might break a Grand
Unified symmetry. ΛDT ∼

√
λMP/ξ , so we would require

√
λ/ξ ∼ 10−3 which is reason-

able. The scenario may be compatible with a form of Higgs inflation.

• Problems: Unitarity, generating the electroweak scale ......
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