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1. Introduction

We begin with a brief reminder about neutrino mass and mixing. The reactor angle was un-
measured before 2012 but is now measured to incredible accuracy: θ13 ≈ 8.4◦±0.2◦ (see [1] and
references therein). The other angles are determined from global fits [2, 3, 4] to be: θ12 ≈ 34◦±1◦

and θ23 ≈ 45◦±3◦, and first hints of the CP-violating (CPV) phase δ ∼−π/2 have been reported,
however with a large error ±π/3. The meaning of the angles is given in Fig.1. Two possible mass
squared orderings are possible as explained in Fig.2. The above quoted angles are extracted from
the global fits which are displayed in Fig.3 for the normal ordering case.

It is interesting to consider the history of model building in the light of these experimental
developments. Following the confirmation of large atmospheric and solar mixing angles in 2002,
the state of model building was summarised in the review [6]. The models discussed there involved
sequential dominance (SD) which generally predicted a normal neutrino mass hierarchy with a re-
actor angle θ13 . m2/m3, close to the existing limits [6]. Shortly afterwards it became very popular
to consider models based on tri-bimaximal lepton mixing involving a zero reactor angle, enforced
by discrete family symmetry as summarised in the reviews [7, 8]. Following the measurement
of the reactor angle in 2012, it was shown how such discrete family symmetry models could be
modified to account for the observed reactor angle as discussed in the reviews [9, 10]. This talk
summarises the developments discussed in those reviews and subsequently.

2. The Standard Model Puzzles

Even though the Standard Model (SM) is essentially complete, following the Higgs boson
discovery, we are far from satisfied since it offers no solutions to the cosmological puzzles of
matter-antimatter asymetry, dark matter and dark energy. It therefore cannot be the final answer. In
addition it leaves three unresolved puzzles in its wake:

The origin of mass - the origin of the Higgs vacuum expectation value, its stability under
radiative corrections, and the solution to the hierarchy problem (most urgent problem of LHC).
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Figure 1: Neutrino mixing angles (assuming zero CP violation) may be represented as Euler angles relating
the charged lepton mass basis states (νe,νµ ,ντ) to the mass eigenstate basis states (ν1,ν2,ν3).
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Figure 2: The probability that a particular neutrino mass state νi with mass mi contains a particular charged
lepton mass basis state (νe,νµ ,ντ) is represented by colours. The left and right panels of the figure are
referred to as normal or inverted mass squared ordering, respectively. The value of the lightest neutrino
mass is presently unknown.

The quest for unification - the question of whether the three known forces of the standard
model may be related into a grand unified theory, and whether such a theory could also include a
unification with gravity.

The problem of flavour - the problem of the undetermined fermion masses and mixing angles
(including neutrino masses and lepton mixing angles) together with the CP violating phases, in
conjunction with the observed smallness of flavour changing neutral currents and very small strong
CP violation. In particular the unknown origin of the extremely small neutrino masses for all three
families may offer a clue as to what lies beyond the SM.

The differences between quark and lepton mixing may also offer clues concerning the flavour
problem. Certainly the flavour problem has now become much richer, following the discovery of
neutrino mass and mixing, so we shall discuss more about this.

Before proceeding to discuss the flavour problem in more detail, we disgress slightly to discuss
an alternative point of view that frequently is voiced and that came up again at this Workshop.
Namely, all that is required for neutrino masses is to add two or three right-handed neutrinos with
zero Majorana mass due to a conserved B−L, and Yukawa couplings for all neutrino families of
about 10−11 and that no new physics beyond this is required. However this conservative point of
view involves a new mystery, namely why the third family Yukawa couplings are of order unity for
the top quark, and not very small for the bottom quark and τ lepton, but are of order 10−11 for the
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Figure 3: Global fits [2, 3, 4] to the lepton mixing angles for the case of normal neutrino mass squared
ordering. The green dots are the best fit points, the red (blue) areas indicate the one (three) sigma ranges.
The dashed lines indicate tri-bimaximal-Cabibbo (TBC) mixing [5], namely the values: s2

12 = 1/3, s2
23 = 1/2

s2
13 = θ 2

C/2. The Fogli et al fits do not include the latest Daya Bay results, whereas the other two do. This is
a modified version of a figure provided by Stefano Morisi.

third family of neutrinos. The see-saw mechanism [11], i.e. large third family neutrino Yukawa
couplings, with physical neutrino masses suppressed by heavy right-handed Majorana masses with
B−L broken at a high scale, provides an elegant solution to this mystery, and opens the door to
leptogenesis. However, the see-saw mechanism by itself does not account for the observed large
lepton mixing, so we need to go further.

It has been one of the long standing goals of theories of particle physics beyond the Standard
Model to predict quark and lepton masses and mixings. With the discovery of neutrino mass and
mixing, this quest has received a massive impetus. Indeed, perhaps the greatest advance in particle
physics over the past decade has been the discovery of neutrino mass and mixing involving large
mixing. The largeness of the lepton mixing angles contrasts with the smallness of the quark mixing
angles, and this observation, together with the smallness of neutrino masses, provides new and
tantalising clues in the search for the origin of quark and lepton flavour. For example, it is intruiging
that the smallest lepton mixing may be related to the largest quark mixing, |Ue3| ≈ θC/

√
2 where θC

is the Cabibbo angle, although this relation is in tension with the latest Daya Bay results. The quest
to understand the origin of the three families of quarks and leptons and their pattern of masses and
mixing parameters is called the flavour puzzle, and motivates the introduction of family symmetry.
In particular, as we shall see, lepton mixing provides a motivation for discrete family symmetry,
which will form the central part of this review. As we shall also see, such theories demand a high
precision knowledge of the lepton mixing angles, beyond that currently achieved.

The SM does not address the following questions which loosely define the flavour problem:

• Why are there three families of quarks and leptons?

• Why are all charged fermion masses so hierarchical with down-type quark masses being of
the same order as charged lepton masses, and up-type quark masses are much more hierar-
chical?

• Why are at least two neutrino masses not very hierarchical?

• What is the origin of the neutrino mass?

• Why are neutrino masses so tiny compared to charged fermion masses?
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• What is the origin of fermion mixing (both CKM and PMNS matrices)?

• Why are CKM mixing angles smaller than PMNS mixing angles apart from the Cabibbo
angle which is of the same order as the reactor angle?

• What is the origin of CP violation in the quark (and lepton) sectors?

Both the CKM and the PMNS mixing matrices are parameterised by: c12c13 s12c13 s13e−iδ

−s12c23− c12s13s23eiδ c12c23− s12s13s23eiδ c13s23

s12s23− c12s13c23eiδ −c12s23− s12s13c23eiδ c13c23

 (2.1)

where δ is the CP violating phase in each sector (quark and lepton) and s13 = sinθ13, etc. with
(very) different angles for quarks and leptons. In the quark sector the mixing angles are all small,
with

s12 = λ , s23 ∼ λ
2, s12 ∼ λ

3 (2.2)

where λ = 0.226±0.001 is the Wolfenstein parameter. The CP violating phase in the quark sector
is roughly δ ∼ (π/2)/

√
2. 1 The lepton mixing angles, given in Fig. 3 and discussed in further

in the next section, must arise in conjunction with the mechanism responsible for the smallness of
neutrino mass, which however is unknown. In the case of Majorana neutrinos, the PMNS matrix
also involves the phase matrix: diag(1,ei α21

2 ,ei α31
2 ) which post-multiplies the above matrix.

3. Neutrino Mass Models

3.1 The open questions from neutrino physics

Despite the great progress coming from neutrino oscillation experiments there are still some
outstanding questions. Are the lepton mixing angles consistent with TBC mixing? If not then is
the atmospheric angle in the first or second octant? What is the leptonic CP violating phase δ? Is
the current hint δ ∼−π/2 going to hold up? Maybe there is no CP violation in the lepton sector?
Are neutrino mass squared ordered normally or inverted? 2 What is the lightest neutrino mass?
Are neutrino masses Majorana or Dirac in nature? Many neutrino experiments are underway or
in the planning stages to address these questions such as T2K, NOνA, Daya Bay, JUNO, RENO,
KATRIN, DUNE and many neutrinoless double beta decay experiments running and planned.

3.2 Road Map of Neutrino Mass Models

Everyone can invent her or his personal roadmap of neutrino mass models, one example being
that shown in Fig.4. The blue boxes contain experimental questions and the red boxes possible
theoretical consequences. Since no new physics on the right-hand side has yet emerged from the
LHC, in this talk we shall focus on the see-saw mechanism [11] with right-handed neutrinos.

1Interestingly, in the original KM parametrisation, the quark CP violating phase is δ ∼ π/2. Similarly, α ∼ π/2 in
the standard unitarity triangle representing the orthogonality of the 1st and 3rd columns of the CKM matrix.

2It is common but incorrect to refer to this question as the “neutrino mass hierarchy” since the “ordering” question is
separate from whether neutrinos are hierarchical in nature or approximately degenerate, which is to do with the lightest
neutrino mass.
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Figure 4: Roadmap of neutrino mass models.

3.3 See-saw mechanism with right-handed neutrinos

Both the number of species and the mass spectrum of right-handed (or sterile) neutrinos is
completely unknown [12]. As shown in Fig.5 the mass spectrum can cover the whole range with
different physical consequences as indicated. It is one of the goals of neutrino physics to determine
this spectrum.

3.4 See-saw mechanism and sequential dominance

Suppose that the Standard Model is supplemented by just three right-handed neutrinos with
masses in the classic see-saw range TeV to MGUT in Fig.5. Then the light neutrino mass matrix
emerges from the see-saw formula [11],

mν =−mDM−1
R (mD)T , (3.1)

where mν is the the light effective left-handed Majorana neutrino mass matrix (i.e. the physical
neutrino mass matrix), mD is the Dirac mass matrix in LR convention and MR is the (heavy) Majo-
rana mass matrix.

In this case it is possible to implement the see-saw mechanism using sequential dominance
(SD) mechanism [13], in the basis, MR = diag(Matm,Msol,Mdec) where the Dirac mass matrix is
constructed from three columns mD = (mD

atm,m
D
sol,m

D
dec),

mD
atm(m

D
atm)

T

Matm
>

mD
sol(m

D
sol)

T

Msol
�

mD
dec(m

D
dec)

T

Mdec
. (3.2)

SD immediately predicts a normal neutrino mass hierarchy m3 > m2� m1 since the lightest phys-
ical neutrino mass m1 is much smaller than the others since the corresponding right-handed neu-
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Figure 5: Possible mass spectrum of right-handed (or sterile) neutrinos corresponding to the physical impli-
cations as shown.
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Figure 6: The Standard Model with three right-handed neutrinos defined as (νatm
R ,νsol

R ,νdec
R ) which in se-

quential dominance are mainly responsible for the m3,m2,m1 physical neutrino masses, respectively.

trino νdec
R is approximately decoupled from the see-saw mechanism. The SM with three such

right-handed neutrinos is depicted in Fig.6.

The observed pattern of lepton mixing angles can be understood in the above SD framework
as follows. In the diagonal charged lepton and right-handed neutrino mass basis, if the domi-
nant “atmospheric” right-handed neutrino has couplings (mD

atm)
T = (0,a1,a2) to (νe,νµ ,ντ), then

this implies tanθ23 ∼ a1/a2 [13] and a bound θ13 . m2/m3 [14]. This result shows that SD al-
lows for large values of the reactor angle, consistent with the measured value. The subdom-
inant “solar” right-handed neutrino couplings (mD

sol)
T = (b1,b2,b3) to (νe,νµ ,ντ) further yield

tanθ12 ∼
√

2b1/(b2−b3) [13, 14]. The lepton mixing angles are of course insensitive to the “de-
coupled” right-handed neutrino couplings (mD

dec)
T .

7
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Figure 7: Quark and lepton masses lego plot (true heights need to be scaled by the factors shown).

4. Towards a theory of flavour

4.1 GUTs and Family Symmetry

If we wish to understand the pattern of quark and lepton masses and mixing angles (and CP
violation) then a fruitful approach is to introduce GUT and family symmetry acting in the directions
shown in Fig.7. Some popular family symmetries which admit triplet representations are shown in
Fig.8. Some possible candidate unified gauge groups are shown in Fig. 9.

4.2 Klein symmetry

The starting point for family symmetry models is to consider the Klein symmetry of the neu-
trino mass matrix. First consider the phase symmetry of the diagonal charged lepton mass matrix
Me,

T †(M†
e Me)T = M†

e Me (4.1)

where T = diag(1,ω,ω2) and ω = e2π/n. For example for n = 3 clearly T generates the group ZT
3 .

In any case, the Klein symmetry of the neutrino mass matrix is given by,

mν = ST mνS, mν =UT mνU (4.2)

where [15]

S =U∗PMNS diag(+1,−1,−1) UT
PMNS (4.3)

U =U∗PMNS diag(−1,+1,−1) UT
PMNS (4.4)

SU =U∗PMNS diag(−1,−1,+1) UT
PMNS (4.5)

8
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A5T7 S4

A4

⌃(168) �(96) SO(3)

�(27)

SU(3)

Figure 8: Some popular family symmetries and their relationships.

and
K = {1,S,U,SU} (4.6)

is called the Klein symmetry ZS
2 ×ZU

2 .

4.3 Direct models and simple lepton mixing patterns

The idea of direct models is that the three generators S,T,U introduced above are embedded
into a discrete family symmetry G which is broken by new Higgs fields called “flavons” of two
types: φ l whose VEVs preserve T and φ ν whose VEVs preserve S,U . These flavons are segregated
such that φ l only appears in the charged lepton sector and φ ν only appears in the neutrino sector as
depicted in Fig.10, thereby enforcing the symmetries of the mass matrices. Note that the full Klein
symmetry ZS

2 × ZU
2 of the neutrino mass matrix is enforced by symmetry in the direct approach.

The Direct approach typically leads to simple patterns of mixing, as discussed below.
An early suggested pattern of lepton mixing is known as bimaximal (BM) mixing with s2

13 = 0
and s2

12 = s2
23 = 1/2 which could originate from the discrete group S4, where the T generator is

preserved in the charged lepton sector, and the S,U generators are preserved in the neutrino sector
(identified with the Klein symmetry) as shown in Fig.10. It has a maximal solar mixing angle [16],
and is given by a matrix of the form

UBM =


1√
2

1√
2

0

−1
2

1
2

1√
2

1
2 −

1
2

1√
2

 . (4.7)

A second pattern of lepton mixing which came to dominate the model building community
until the measurement of the reactor angle is the tribimaximal (TB) mixing matrix [17]. This

9
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Figure 9: Some possible candidate unified gauge groups.

has been associated with models based on the flavour symmetries A4 and S4. Like BM mixing it
predicts s2

13 = 0 and s2
23 = 1/2 but differs in that it predicts a solar mixing angle given by s12 =

1/
√

3, i.e. θ12 ≈ 35.3◦. The mixing matrix is given explicitly by

UTB =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

 . (4.8)

Another pattern of lepton mixing which was viable until the reactor angle measurement asso-
ciates the golden ratio ϕ = 1+

√
5

2 with the solar mixing angle. The original golden ratio (GR) mixing
pattern is related to the flavour symmetry A5 [18]. As above, it predicts s2

13 = 0 and s2
23 = 1/2 but

differs by having a solar mixing angle given by tν
12 = 1/ϕ , i.e. θ ν

12 ≈ 31.7◦, resulting in the mixing
matrix

UGR =


ϕ√
2+ϕ

1√
2+ϕ

0

− 1√
4+2ϕ

ϕ√
4+2ϕ

1√
2

1√
4+2ϕ

− ϕ√
4+2ϕ

1√
2

 . (4.9)

Following the measurement of the reactor angle, all of the above simple patterns are excluded
and it has emerged that the only viable direct models are those based on ∆(6N2) which leads to
more complicated patterns of lepton mixing consistent with data [19, 20, 21]. Unfortunately large
N is required in order to achieve the desired reactor angle. Moreover such models generally predict

10
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Figure 10: The direct approach to models of lepton mixing.

the CP phase δ = 0,π resulting in the atmospheric sum rule [20],

θ23 = 45o∓θ13/
√

2. (4.10)

which follows since the PMNS matrix has the TM2 form shown later in Eq.5.4.

4.4 Spontaneous CP violation

The direct approach can be generalised to the case of a conserved CP (see [22] and references
therein) which is spontaneously broken as shown in Fig.11. This approach has been studied for
∆(6N2) in [23]. However since we already know that δ = 0,π in this case it only fixes the Majorana
phases.

The generalised CP approach has also been used in the semi-direct approach (defined below)
where the phase δ is undetermined without CP. Here the results are more interesting since for
the smaller groups like A4 and S4 one generally predicts a discrete choice including δ = ±π/2
[24]. However for larger groups in the series ∆(6N2) and ∆(3N2), broken in a semi-direct way, the
discrete predictions for δ proliferate [25].

Recently an invariant approach to CP symmetry in family symmetry models has been dis-
cussed [26].

5. Semi-direct approach and mixing sum rules

Taking a less constrained approach to model building one may suppose that we start from only
smaller discrete family groups such as S4, which leads to either TB or BM mixing at leading order,
or A5 which leads to GR mixing at leading order as shown in Fig.12. Then we suppose that at higher
order, one or more of the generators S,T,U is broken, which is necessary in this approach since
the resulting BM, TB and GR mixing patterns discussed in Eqs.4.7,4.8,4.9 are excluded. There are
two interesting possibilities depicted in Fig.12 as follows:

1. If the U generator is broken then this leads to either TM1 or TM2 mixing depending on
whether SU or S is preserved, leading to atmospheric sum rules, as discussed below.

11
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Figure 11: The direct approach including CP.

Figure 12: The semi-direct approach to models of lepton mixing.

2. If the T generator protecting the charged lepton mass matrix is broken, then we can expect
charged lepton corrections leading to the solar sum rules also as discussed below.

The semi-direct approach was first used in [27, 28] for A4 where there is no U generator to start with
and also S4 which is broken to A4 at higher order [28]. It was subsequently generalised to von Dyck
groups in [29]. In all cases the reactor angle is not predicted but described by a free parameter. This
is a retreat from the original goal of predicting lepton mixing angles using symmetry.

5.1 TB deviation parameters and atmospheric sum rules

After the measurement of the reactor angle, TB mixing is excluded. However, TB mixing
still remains a reasonable approximation to lepton mixing for the solar and atmospheric angles. It

12
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therefore makes sense to expand the angles about their TB values [30, 31]:

sinθ12 =
1√
3
(1+ s), (5.1)

sinθ23 =
1√
2
(1+a), (5.2)

sinθ13 =
r√
2
, (5.3)

where s, a, and r are the (s)olar, (a)tmospheric and (r)eactor deviation parameters such that TB
mixing [17] is recovered for s = a = r = 0. For example, TBC mixing [5] corresponds to s = a = 0
and r = θC, where θC is the Cabibbo angle, which is consistent with data at three sigma as shown
in Fig.3.

Tri-maximal mixing is a variation which preserves either the first or the second column of the
TB mixing mixing matrix in Eq.4.8, leading to two versions called TM1 or TM2,

UTM1 =


2√
3
− −

− 1√
6
− −

1√
6
− −

 ,UTM2 =

−
1√
3
−

− 1√
3
−

− − 1√
3
−

 , (5.4)

where TM1 preserves the product SU of S4, while TM2 preserves the S generator of S4. The dashes
indicate that the other elements are undetermined. However these are fixed once the reactor angle
is specified (it is a free parameter here). These imply the relations

TM1 : |Ue1|=
√

2
3

and
∣∣Uµ1

∣∣= |Uτ1|=
1√
6

; (5.5)

TM2 : |Ue2|=
∣∣Uµ2

∣∣= |Uτ2|=
1√
3
. (5.6)

The atmospheric mixing sum rule

a = λ r cosδ +O(a2,r2), with s = O(a2,r2), (5.7)

was first derived in [30] by expanding the PMNS matrix to first order in r,s,a. It also follows from
a first order expansion of Eqs.5.5,5.6, where λ = 1 for TM1 and λ =−1/2 for TM2. The study of
correlations of this type, and their application to the discrimination between underlying models, has
been shown to be a realistic aim for a next-generation superbeam experiment [32], see for example
Fig.13.

5.2 Charged lepton corrections and solar sum rules

Now suppose that neutrino mixing Uν
TB obeys TB exactly so that the PMNS matrix is given

by U = UeUν
TB where Uν

TB is equated to Eq.4.8 while Ue encodes some unknown charged lepton
corrections which must be small since U is not far from TB mixing. Charged lepton corrections
involve some violation of the T generator.

The solar mixing sum rule [33, 34, 35] then follows from the assumption that θ e
23 = θ e

13 = 0,

θ12 ≈ 35.26o +θ13 cosδ or cosδ ≈ θ12−35.26o

θ13
(5.8)
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where 35.26o = sin−1 1√
3
, which can be recast as [30],

s = r cosδ +O(a2,r2). (5.9)

Recently it has been realised that, assuming only θ e
13 = 0, but allowing θ e

23 6= 0, the following exact
result can be simply obtained [36]:

|Uτ1|
|Uτ2|

=
1√
2
, (5.10)

which readily leads to an exact prediction for cosδ in terms of the other physical lepton angles,

cosδ =
t23s2

12 + s2
13c2

12/t23− 1
3(t23 + s2

13/t23)

sin2θ12s13
, (5.11)

as displayed in Fig.14. For the case of TB neutrino mixing the error in cosδ incurred by using
the leading order sum rule is ∆(cosδ )∼ 0.08 for normal ordering and ∆(cosδ )∼ 0.01 for inverted
ordering [36]. These errors are unimportant for current levels of accuracy as shown in Fig.14 but
they may (hopefully) become significant in the future.

The leading order sum rule offers a simple way to understand the results in Fig.14. For example
from Fig.14 it seems that TB neutrino mixing predicts cosδ ≈ 0 if θ12 ≈ 35.26o, which is obvious
from Eq.5.8 3. This can also be understood from Eq.5.11 where we see that for s2

12 = 1/3 the
leading terms t23s2

12 and 1
3 t23 in the numerator cancel, leaving cosδ = s13/(2

√
2t23)≈ 0.05 which

is consistent with the numerical estimates of the error given above for a range of θ12.
Solar sum rules can also be obtained for different types of neutrino mixing such as Uν

BM (which
is almost excluded) and Uν

GR (which gives similar results to the case Uν
TB considered here). The

general formula given in [36] is,

cosδ =
t23s2

12 + s2
13c2

12/t23− sν2
12 (t23 + s2

13/t23)

sin2θ12s13
, (5.12)

where sν2
12 = 1

3 ,
1
2 for Uν

TB,BM and so on. The prospects for studying solar sum rules at JUNO and
LBNF is discussed in [36]. A slightly more lengthy but equivalent formula to Eq.5.11 had been
previously derived [37] by an alternative method involving an auxiliary phase φ without using the
elegant result Eq.5.10,

cosδ =
t23

sin2θ12s13

[
cos2θ

ν
12 +(s2

12− cν2
12 )(1− cot2 θ23s2

13)
]
. (5.13)

We prefer the simpler form in Eq.5.12 which involves θ ν
12 in only one place since it exhibits

the cancellation between the terms t23s2
12 and sν2

12 t23 when s2
12 = sν2

12 responsible for the prediction
cosδ ≈ 0 in this case

Finally we give a word of caution that when comparing leading order sum rules to the exact
results the ratio (cosδ )exact/(cosδ )LO used in [38] will lead to misleading results when (cosδ )LO≈
0. In general it is safer to compare them using the experimentally relevant quantity ∆(cosδ ) =

(cosδ )exact− (cosδ )LO defined in [36] where ∆(cosδ ). 0.1 for TB mixing as mentioned above.
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Figure 13: Expectation for the determination of the TM1 atmospheric mixing sum rule a ≈ r cosδ at one,
three and five sigma for a low energy neutrino factory with a magnetised iron detector (for more details see
[32]).
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Figure 14: Solar sum rules prediction for cosδ using the exact result for TB neutrino mixing

6. Indirect models

The final logical possibility is that the family symmetry is completely broken as shown in
Fig.15. In this approach, we allow the flavons φ l and φ ν to have not only symmetry preserving
vacuum alignments, but also new alignments which are orthogonal to them and break the symmetry.

For example in A4, we have the symmetry preserving alignments, v
0
0

 ,

 0
v
0

 ,

 0
0
v

 ,

±v
±v
±v

 , (6.1)

where the first three alignments may be used to make the charged lepton mass matrix diagonal. In
the neutrino sector we consider new orthogonal alignments such as, 0

a
a

⊥
 v

v
−v

 ,

 v
0
0

 , (6.2)

3Note that cosδ ∼ 0 is consistent with the current hint δ ∼−π/2.
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lR(L.�l)H ⌫R(L.�⌫)H

Figure 15: The indirect approach to models of lepton mixing.

as well as ones which are orthogonal to them, and so on. Such alignments completely break the
A4 symmetry. The following symmetry breaking alignment may be obtained using orthogonality
arguments  2

−1
1

⊥
 1

1
−1

 ,

 0
1
1

 . (6.3)

Using such “orthogonal” alignments various types of constrained sequential dominance (CSD)
have been proposed, with the dominant right-handed “atmospheric” couplings (0,a,a) to (νe,νµ ,ντ),
provided by the alignment in Eq.6.2, and hence an approximate maximal atmospheric angle tanθ23∼
a1/a2∼ 1. Further orthogonal alignments are responsible for the subdominant “solar” right-handed
neutrino couplings to (νe,νµ ,ντ) as follows:

• CSD(1): (b,b,−b)→ θ13 = 0 [33].

• CSD(2): (b,2b,0)→ θ13 ∼ 7◦ [39].

• CSD(3): (b,3b,b)→ θ13 ∼ 8.5◦ [40].

• CSD(4): (b,4b,2b)→ θ13 ∼ 9◦ [40].

These examples are chosen to maintain an approximate trimaximal solar angle tanθ12∼
√

2b1/(b2−
b3) ∼ 1/

√
2 but have different reactor angles depending on the phase arg(b/a), leading to a pre-

diction for δ in each case.
The CSD(n) alignment (1,n,(n−2))T is orthogonal to the alignment in Eq. 6.3, 1

n
(n−2)

⊥
 2
−1
1

 , (6.4)
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where the orthogonality in Eq. 6.4 is maintained for any value of n (not necessarily integer). To pin
down the value of n and show that it is a particular integer requires a further orthogonality condition
as discussed in [42].

In a CSD(n) framework [42], after the see-saw mechanism, the neutrino mass matrix simplifies
in the two right-handed neutrino case to

mν

(n) = ma

 0 0 0
0 1 1
0 1 1

+mbeiη

 1 n n−2
n n2 n(n−2)

n−2 n(n−2) (n−2)2

 , (6.5)

where η is a physically important phase. This case immediately predicts the lightest physical
neutrino mass to be zero, m1 = 0. It also immediately predicts TM1 mixing since,

mν

(n)

 2
−1
1

=

 0
0
0

 . (6.6)

In other words the column vector (2,−1,1)T is an eigenvector of mν

(n) with a zero eigenvalue, i.e.
it is the first column of the PMNS mixing matrix, corresponding to m1 = 0, which means TM1
mixing.

For a given choice of alignment n, there are three real input parameters ma, mb and η from
which two light physical neutrino masses m2, m3, three lepton mixing angles, the CP-violating
phase δCP and two Majorana phases are derived; a total of nine physical parameters from three input
parameters, i.e. six predictions for each value of n. As the Majorana phases are not known and
δCP is only tentatively constrained by experiment, this leaves five presently measured observables,
namely the two neutrino mass squared differences and the three lepton mixing angles, from only
three input parameters. The resulting predictions [42] are shown in Fig.16.

6.1 A to Z of flavour with Pati-Salam

As an example of an “indirect” model, an “A to Z of flavour with Pati-Salam” based on the
Pati-Salam gauge group has been proposed [43] as sketched in Fig.17. The Pati-Salam symmetry
leads to Y u = Y ν , with the first column proportional to the orthogonal alignment (0,e,e) the sec-
ond column proportional to the CSD(4) orthogonal alignment, (a,4a,2a) and the third column is
proportional to the symmetry preserving alignment (0,0,c), where e� a� c gives the hierarchy
mu� mc� mt . This structure predicts a Cabibbo angle θC ≈ 1/4 in the diagonal Y d ∼ Y e basis
enforced by the first three alignments in Eq.6.1. It also predicts a normal neutrino mass hierarchy
with θ13 ≈ 9◦, θ23 ≈ 45◦ and δ ≈ 260◦ [43].

The model is based on the Pati-Salam (PS) gauge group, with A4×Z5 family symmetry,

SU(4)C×SU(2)L×SU(2)R×A4×Z5. (6.7)

The quarks and leptons are unified in the PS representations as follows,

Fi = (4,2,1)i =

(
u u u ν

d d d e

)
i

→ (Qi,Li),

Fc
i = (4̄,1,2)i =

(
uc uc uc νc

dc dc dc ec

)
i

→ (uc
i ,d

c
i ,ν

c
i ,e

c
i ), (6.8)
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Figure 16: Best-fit PMNS mixing angles and CP-violating phase with respect to n, for the two right-handed
neutrino CSD(n) model, after performing a global fit to the three real input parameters ma, mb and η . We
emphasise that |δCP| is a genuine prediction here since have not used the one sigma hint from experiment as
an input constraint. It is striking that both CSD(3) and CSD(4) both yield predictions within the preferred
range |δCP| ∼ 90◦± 45◦ but may be distinguished by their differing predictions for the atmospheric angle
θ23 ≈ 45◦ and θ23 ≈ 38◦, respectively.
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Figure 17: A to Z of flavour with Pati-Salam, where A ≡ A4 and Z ≡ Z5. The left-handed families form a
triplet of A4 and are doublets of SU(2)L. The right-handed families are distinguished by Z5 and are doublets
of SU(2)R. The SU(4)C unifies the quarks and leptons with leptons as the fourth colour, depicted here as
white.

where the SM multiplets Qi,Li,uc
i ,d

c
i ,ν

c
i ,e

c
i resulting from PS breaking are also shown and the

subscript i (= 1,2,3) denotes the family index. The left-handed quarks and leptons form an A4

triplet F , while the three (CP conjugated) right-handed fields Fc
i are A4 singlets, distinguished by

Z5 charges α,α3,1, for i = 1,2,3, respectively. Clearly the Pati-Salam model cannot be embedded
into an SO(10) Grand Unified Theory (GUT) since different components of the 16-dimensional
representation of SO(10) would have to transform differently under A4×Z5, which is impossible.
On the other hand, the PS gauge group and A4 could emerge directly from string theory.

The Pati-Salam gauge group is broken at the GUT scale to the SM,

SU(4)C×SU(2)L×SU(2)R→ SU(3)C×SU(2)L×U(1)Y , (6.9)
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by PS Higgs, Hc and Hc,

Hc = (4̄,1,2) = (uc
H ,d

c
H ,ν

c
H ,e

c
H),

Hc = (4,1,2) = (ūc
H , d̄

c
H , ν̄

c
H , ē

c
H). (6.10)

These acquire vacuum expectation values (VEVs) in the “right-handed neutrino” directions, with
equal VEVs close to the GUT scale 2×1016 GeV,

〈Hc〉= 〈νc
H〉= 〈Hc〉= 〈ν̄c

H〉 ∼ 2×1016 GeV, (6.11)

so as to maintain supersymmetric gauge coupling unification.
Our starting point is to assume that the high energy theory, above the PS breaking scale, con-

serves CP. Under a CP transformation, the A4 singlet fields ξ ,Σu,Σd transform into their complex
conjugates,

ξ → ξ
∗, Σu→ Σ

∗
u, Σd → Σ

∗
d , (6.12)

where the complex conjugate fields transform in the complex conjugate representations under A4×
Z5. For example if ξ ∼ α4, under Z5, then ξ ∗ ∼ α . Similarly if Σu ∼ 1′, Σd ∼ 1′′, under A4,
then Σ∗u ∼ 1′′, Σ∗d ∼ 1′. On the other hand, in a particular basis, for A4 triplets φ ∼ (φ1,φ2,φ3),
a consistent definition of CP symmetry requires the second and third triplet components to swap
under CP,

φ → (φ ∗1 ,φ
∗
3 ,φ

∗
2 ). (6.13)

With the above definition of CP, all coupling constants g and explicit masses m are real due to CP
conservation and the only source of phases can be the VEVs of fields which break A4×Z5. In the
model of interest, all the physically interesting CP phases will arise from Z5 breaking.

Let us now consider the A4 triplet fields φ which also carry Z5 charges. In the full model
there are four such triplet fields, or “flavons”, denoted as φ u

1 , φ u
2 , φ d

1 , φ d
2 . The idea is that φ u

i are
responsible for up-type quark flavour, while φ d

i are responsible for down-type quark flavour.
The structure of the Yukawa matrices depends on the so-called CSD(4) vacuum alignments of

these flavons, with the overall phases quantised due to Z5,

〈φ u
1 〉=

V u
1√
2

eimπ/5

 0
1
1

 , 〈φ u
2 〉=

V u
2√
21

eimπ/5

 1
4
2

 , (6.14)

and

〈φ d
1 〉=V d

1 einπ/5

 1
0
0

 , 〈φ d
2 〉=V d

2 einπ/5

 0
1
0

 . (6.15)

We note here that the vacuum alignments in Eq.6.15 and the first alignment in Eq.6.14 are fairly
“standard” alignments that are encountered in tri-bimaximal mixing models, while the second
alignment in Eq.6.14 is obtained using orthogonality arguments, as discussed above.

The model will involve Higgs bi-doublets of two kinds, hu which lead to up-type quark and
neutrino Yukawa couplings and hd which lead to down-type quark and charged lepton Yukawa
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couplings. In addition a Higgs bidoublet h3, which is also an A4 triplet, is used to give the third
family Yukawa couplings.

After the PS and A4 breaking, most of these Higgs bi-doublets will get high scale masses and
will not appear in the low energy spectrum. In fact only two light Higgs doublets will survive
down to the TeV scale, namely Hu and Hd . The basic idea is that the light Higgs doublet Hu with
hypercharge Y = +1/2, which couples to up-type quarks and neutrinos, is a linear combination
of components of the Higgs bi-doublets of the kind hu and h3, while the light Higgs doublet Hd

with hypercharge Y = −1/2, which couples to down-type quarks and charged leptons, is a linear
combination of components of Higgs bi-doublets of the kind hd and h3,

hu,h3→ Hu, hd ,h3→ Hd . (6.16)

The renormalisable Yukawa operators, which respect PS and A4 symmetries, have the follow-
ing form, leading to the third family Yukawa couplings shown, using Eqs.6.8,6.16,

F.h3Fc
3 → Q3Huuc

3 +Q3Hddc
3 +L3Huν

c
3 +L3Hdec

3, (6.17)

where we have used Eqs.6.8,6.16. The non-renormalisable operators, which respect PS and A4

symmetries, have the following form,

F.φ u
i huFc

i → Q.〈φ u
i 〉Huuc

i +L.〈φ u
i 〉Huν

c
i , (6.18)

F.φ d
i hdFc

i → Q.〈φ d
i 〉Hddc

i +L.〈φ d
i 〉Hdec

i , (6.19)

where i = 1 gives the first column of each Yukawa matrix, while i = 2 gives the second column and
we have used Eqs.6.8,6.16. Thus the third family masses are naturally larger since they correspond
to renormalisable operators, while the hierarchy between first and second families arises from a
hierarchy of flavon VEVs.

Inserting the vacuum alignments in Eqs.6.14 and 6.15 into Eqs.6.18 and 6.19, together with
the renormalisable third family couplings in Eq.6.17, gives the Yukawa matrices of the form,

Y u = Y ν =

 0 a 0
e 4a 0
e 2a c

 , Y d ∼ Y e ∼

 y0
d 0 0
0 y0

s 0
0 0 y0

b

 . (6.20)

The PS unification predicts the equality of Yukawa matrices Y u = Y ν and Y d ∼ Y e, while the A4

vacuum alignment predicts the structure of each Yukawa matrix, essentially identifying the first
two columns with the vacuum alignments in Eqs.6.14 and 6.15. With a diagonal right-handed
Majorana mass matrix, Y ν leads to a successful prediction of the PMNS mixing parameters. Also
the Cabibbo angle is given by θC ≈ 1/4 [41]. Thus Eq.6.20 is a good starting point for a theory
of quark and lepton masses and mixing, although the other quark mixing angles and the quark CP
phase are approximately zero. However the above discussion ignores the effect of Clebsch factors
which will alter the relationship between elements of Y d and Y e, which also include off-diagonal
elements responsible for small quark mixing angles in the full model discussed in [43].

20



P
o
S
(
P
L
A
N
C
K
 
2
0
1
5
)
0
6
8

Neutrinos, Flavour and CP Violation

7. F-theory origin of discrete family symmetry

F-theory models have attracted considerable interest over the recent years [44]. For exam-
ple, Supersymmetric (SUSY) Grand Unified Theories (GUTs) based on SU(5) has been shown to
emerge naturally from F-theory. However, in the F-theory context, the SU(5) GUT group is only
one part of a larger symmetry. The other parts manifest themselves at low energies as Abelian
and/or non-Abelian discrete symmetries, which can be identified as family symmetries, leading to
significant constraints in the effective superpotential (for a review see e.g. [45]).

In [46] non-Abelian fluxes were conjectured to give rise to non-Abelian discrete family sym-
metries in the low energy effective theory. The origin of such a symmetry is the non-Abelian
SU(5)⊥ which accompanies SU(5)GUT at the E8 point of enhancement. Whether a non-Abelian
symmetry survives in the low energy theory will depend on the geometry of the compactified space
and the fluxes present. The usual assumption is that the SU(5)⊥ is first broken to a product of
U(1)⊥ groups which are then further broken by the action of discrete symmetries associated with
the monodromy group. Instead it was conjectured in [46] that non-Abelian fluxes can break SU(5)⊥
first to a non-Abelian discrete group S4 then to a smaller group such as A4, D4 and so on which act
as a family symmetry group in the low energy effective theory. Models of this kind have recently
been discussed in [47]. Thus F-theory could provide the origin of the discrete family symmetries
discussed in this talk.

8. Conclusion

In conclusion, although the reactor angle has been accurately measured, which rules out simple
patterns of lepton mixing such as BM, TB and GR, it is still possible to have simple patterns of
lepton mixing with the first or second column of the TB matrix preserved, namely TM1 or TM2,
with atmospheric sum rules. It is also possible to maintain BM, TB and GR mixing for neutrinos
with the reactor angle is due to charged lepton corrections, leading to solar sum rules.

Although adding right-handed neutrinos is a very simple and minimal thing to do, the num-
ber of right-handed (sterile) neutrinos is undetermined by anomaly cancellation, and their mass
spectrum is completely unknown. The classic see-saw mechanism would correspond to having
three right-handed neutrinos with masses in the range TeV-MGUT. Sequential dominance provides
an elegant and natural way to understand neutrino mixing angles, with the dominant right-handed
neutrino couplings providing the atmospheric mixing angle, the sub-dominant solar right-handed
neutrino couplings providing the solar mixing angle and the decoupled right-handed neutrino cou-
plings being irrelevant.

Turning to theories of flavour, a very promising approach is the combination of GUT and
family symmetry. The large lepton mixing angles suggest some sort of discrete family symmetry at
work, although not in the most simple direct way imagined before the reactor angle was measured.
However the direct symmetry approach in which the symmetries of the mass matrices are directly
embedded into the family symmetry, drives us to family symmetry groups in the ∆(6N2) series
with large N values necessary in order to explain the reactor angle.

A retreat from this is to suppose that only part of the symmetries of the mass matrices can be
found in the family symmetry group, which is called the semi-direct approach. This allows smaller
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family groups such as S4,A4,A5 whose generators S,T,U may only partly survive. For example if
T is broken but the Klein symmetry S,U survives in the neutrino sector this would correspond to
BM, TB or GR neutrino mixing but with charged lepton corrections, leading to solar sum rules. If
T is preserved but U is broken then this corresponds to TM1 or TM2 mixing with atmospheric sum
rules.

Alternatively, it is possible to have a small family symmetry such as A4 where the family
symmetry is completely broken, as in the indirect approach. In this case new vacuum alignments are
possible which can be used to give interesting Yukawa couplings corresponding to different types
of constrained sequential dominance. Although not enforced by symmetry, the indirect approach
leads to highly predictive models which can be tested experimentally. We have discussed one such
example, the A to Z of flavour with Pati-Salam. Finally we mentioned that the discrete family
symmetries discussed in this talk might have an F-theory origin.

SK acknowledges support from the European Union FP7 ITN-INVISIBLES (Marie Curie Ac-
tions, PITN- GA-2011- 289442) and thanks the organisers for a very stimulating and enjoyable
workshop.
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