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1. Introduction

At present, superstring theory is the only framework in which all known interactions, including
gravity, are consistently described and unified at the quantum level. Thus, besides questions about
the cosmological evolution of the Universe, string theory can address issues in particle physics,
and as a first step, the latter can be considered at the classical level in four dimensional Minkowski
spacetime. Thirty years of efforts led to several N = 1 supersymmetric string models having
quasi-realistic spectra, with a net number of three chiral families and containing the standard model
interactions at low energy. Among them, are those realized in fermionic construction in heterotic
string having an SO(10) gauge symmetry broken at the string level by discrete Wilson lines to
the Pati-Salam gauge group, SU(4)× SU(2)L× SU(2)R, which is further broken to the Standard
Model gauge group, SU(3)× SU(2)L×U(1)Y , by a usual Higgs mechanism [1]. However, since
all these quasi-realistic models possess N = 1 supersymmetry (susy) at tree level, the question of
how it is broken and a priori at a low scale to offer a solution to the gauge hierarchy problem arises.
Other questions are then following. Are there conditions insuring perturbation theory to be defined
consistently ? And, what are the implications of the susy breaking for the cosmological constant ?
The aim of the present work is to provide elements of answers to these problems.

All known supersymmetry breaking mechanisms that avoid the generation of a large cosmo-
logical constant, say of order of the string scale, yield effective N = 1 no-scale supergravity
theories [2]. By definition, the latter describe at tree level a spontaneous breaking of supersym-
metry at an arbitrary scale m3/2, while the cosmological term vanishes. In other words, m3/2 is a
flat direction of a positive semi-definite classical potential Vtree. Defining S to be the dilaton-axion
field and TI,UI the Kähler and complex structure moduli characterizing the internal 6-dimensional
space (their numbers are in general distinct), one has

〈Vtree〉= 0 , m2
3/2 =

|w0|2

Imz1 Imz2 Imz3
, (1.1)

where w0 is the holomorphic superpotential and the choice of scalars z1,z2,z3 among the set
{S,TI,UI} is model-dependent. The superpotential being independent of at least one of the zi’s,
the latter is undetermined by the condition 〈Vtree〉= 0 and m3/2 is a flat direction.

Starting from a classical string model that is N = 1 supersymmetric in Minkowski spacetime,
a modification of the superpotential is required for m3/2 to be non-trivial. Several mechanism can
be invoked :

• At the level of the supergravity, a non-perturbative mechanism such as gaugino condensation may

induce a stabilization of the dilaton [3]. This yields z3 = S and |w0(S)|2/ImS equal to
Λ3

np
Ms

at the minimum of the potential, where Λnp is the generated scale and Ms is the string scale
1/
√

α ′,1 while z1 and z2 belong to the set {TI}. In this approach, the string predictability
is partially lost since the effective susy breaking parameters, which are proportional to the
gaugino condensation scale Λnp, are known up to proportionality coefficients.

1If the dilaton Φ is split into a vacuum expectation value (VEV) and a fluctuation, Φ = 〈Φ〉+φ , and the Einstein-
Hilbert action is normalized with the Planck mass squared, 1

16πGN
≡ M2

P/2 ≡ e−2〈Φ〉M2
s /2, then ImS is defined to be

e−2φ and its VEV is by construction equal to 1.
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• Perturbative and/or non-perturbative fluxes [4] along internal directions can be implemented to
induce a superpotential responsible for the susy breaking. In some cases, the use of S-, T - or
U-dualities between the heterotic, type IIA, type IIB and orientifold theories leads to a partial
predictability of the setup [5]. Different choices of zi’s may be equivalent, while passing from
one picture to another. For instance, they can belong to the sets {TI}, {UI}, {S,T1,U1}, etc.

A particular choice of geometrical fluxes induces a stringy Scherk-Schwarz (SSS) supersymmetry
breaking mechanism [6, 7]. It has the advantage to be introduced at the perturbative string level in
orbifold compactifications [8], or more generally in fermionic constructions [9]. The susy breaking
parameters can be directly computed from perturbative string amplitudes. For instance, one can
implement in heterotic Z2× Z2 fermionic construction the marginal deformations associated to
the Kähler and complex structures of the three internal 2-tori, which are parameterized by the
complex moduli TI,UI , I = 1,2,3 [10, 11]. In this “moduli-deformed fermionic construction”, if
for simplicity the susy breaking involves a single internal circle of radius R, one has

m2
3/2 ∝

M2
s

ImS ImT1 ImU1
=

(
eφ Ms

R

)2

. (1.2)

Imposing m3/2 to be small compared to the string scale, say of order 1−10 TeV, with Ms =O(1017)

GeV, one concludes that the internal radius is enormous, R =O(1013). Important consequences for
the gauge couplings and the cosmological constant follow.

When R is very large, infinite towers of light Kaluza-Klein states (KK) exist, giving rise in
general to large quantum corrections [12] . This fact imposes strong constraints on the model, for
perturbation theory to be valid. For instance, in the case of an asymptotically free gauge group
factor Gi, an almost perfect compensation of the tree level coupling (which is essentially the string
coupling gs = e〈Φ〉) and the 1-loop correction must occur, for the effective gauge coupling at 1-loop
to be of order 1. This fine-tuning is a manifestation of the so-called “decompactification problem”.

A large value of R also yields a very specific form of the 1-loop effective potential that is
proportional to (nF−nB)m4

3/2, where nF and nB are the numbers of massless fermionic and bosonic
degrees of freedom. If, as follows from the fact that the theory is in a spontaneously broken phase
of supersymmetry, there is no contribution of order M4

s , no term of order M2
s m2

3/2 arises either, due
to the presence of an infinite tower of light KK states. This is important since such a contribution
would otherwise lead to a destabilization of the gauge hierarchy, which requires 〈m3/2〉 � Ms.
Actually, minimizing with respect to m3/2, one would obtain either 〈m3/2〉= 0 (no susy breaking)
or 〈m3/2〉= O(Ms) (no hierarchy) [13].

However, the cosmological term arising at 1-loop being of order m4
3/2, it is still by far too

large, compared to the presently observed one, which is of order 10−120 in Planck units. Thus,
we introduce a subclass of models, where the no-scale structure valid at tree level remains true
at 1-loop. These “stringy super no-scale models” have a positive semi-definite 1-loop effective
potential that admits m3/2 as a flat direction [14],

〈V1-loop〉= 0 , m2
3/2 =

|w0|2

Imz1 Imz2 Imz3
, (1.3)

provided m3/2�Ms. They are characterized by the condition nF = nB.
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In Sect. 2, we give a brief overview of the above issues. We explain in more details the
decompactification problem, in the context of effective gauge couplings. Then, we derive the
m4

3/2 scaling of the 1-loop effective potential arising in string or KK field theory, when susy is
spontaneously broken by a (stringy) Scherk-Schwarz mechanism. This behavior will motivate our
definition of super no-scale models.

Sect. 3 is a review of a solution to the decompactification problem [11], in the setup of the
so-called heterotic string Z2×Z2 “moduli-deformed” fermionic construction. It applies to models
where (at least) one of the Z2 actions is free. However, it is important to mention that this require-
ment implies the models are not chiral, which means that a fully satisfactory context for describing
realistic, non-supersymmetric, chiral models still remains to be found.

Nevertheless, some of the models presented in Sect. 3 admit a super no-scale structure. This
is shown in Sect. 4, where the first examples of super no-scale models are presented [14].

Finally, Sect. 5 summarizes briefly our results.

2. On the decompactification and hierarchy problems

Our aim in this section is to present difficulties encountered in no-scale models realized in
string theory, when the susy breaking is implemented via SSS mechanism. We discuss the 1-loop
corrections to the gauge couplings that may be large as the gravitino mass is low, which yields the
decompactification problem. We then describe the m4

3/2 scaling of the effective potential, which is
fine concerning the gauge hierarchy but inadequate for the cosmological constant problem.

2.1 Gauge couplings

We consider the heterotic string in four dimensions. For any gauge group factor Gi, the low
energy running gauge coupling takes at 1-loop the general form [15, 16, 17]

16π2

g2
i (µ)

= ki 16π2

g2
s

+bi ln
M2

s

µ2 +∆
i , (2.1)

where the tree level part involves the Kac-Moody level ki and the string coupling gs. The massless
states, with β -function coefficient bi yield the logarithmic term, which depends on the energy scale
µ . The contribution of the massive modes is denoted ∆i, the so-called threshold corrections to
the gauge coupling. Our aim is to show how the decompactification problem arises in a simple
case, namely that of orbifold compactification or moduli deformed fermionic construction, when
an internal circle of radius R is large and factorized.

In these circumstances, ∆i takes into account the supermassive string states together with a full
tower of charged KK states of masses m/R, m ∈ Z. Except in the N = 4 maximally supersymmet-
ric case in which bi and ∆i vanish, the threshold corrections are dominated by the KK states.2 For
instance, in the N = 2 supersymmetric case realized by a T 2×K3 compactification3, taking one
of the radii of T 2 to be large, one obtains

∆
i =CiR−bi lnR2 +O

(
1
R

)
, (2.2)

2The arguments of this claim are given below Eq. (2.3), when we compute the effective potential.
3The result in universal i.e. invariant, wether one considers K3 at an orbifold point or not.
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where Ci =Cbi−C′ki, for some positive C and C′, which dependent on the second radius of T 2 [18].
Since Ci = O(1), requiring in Eq. (2.1) the loop correction to be small compared to the tree
level contribution amounts to having g2

s R < 1. In other words, for perturbation theory to be valid,
the string coupling must be extremely weak, gs < O(10−6.5). When Ci > 0, which implies Gi

is not asymptotically free, Eq. (2.1) imposes the running gauge coupling to be essentially free,
gi(µ) = O(gs), and Gi describes a hidden gauge group. However, when Ci < 0, which is the case
if Gi is asymptotically free, the very large tree level contribution proportional to 1/g2

s must cancel
CiR, up to very high accuracy, for the running gauge coupling to be of order 1. Furthermore,
this unnatural tuning of gs cannot even be imposed by hand, when several Gi-factors coexist, with
distinct couplings.

This phenomenon, known as the “decompactification problem”, may actually arise each time
a submanifold of the internal space is large, in string units, i.e. when the internal CFT can be
interpreted as a geometrical compactified space. For example, this happens in the supersymmet-
ric compactifications on Calabi-Yau threefolds, in the large volume scenari. In the case we are
mostly interested in the present work, R determines as in Eq. (1.2) the scale m3/2 of spontaneous
N = 1 supersymmetry breaking. Given the fact that in the Z2×Z2 moduli-deformed fermionic
constructions there are always N = 2 supersymmetric sectors, the question of how to avoid the
decompactification problem arises.

A solution for N = 2 supersymmetric models was proposed in Refs [18, 19]. Actually, one
may think that
(i) if N = 2 is realized as a spontaneous breaking of N = 4 and
(ii) if N = 4 is recovered when the large volume under consideration is sent to infinity,
then, instead of diverging as the volume, the threshold corrections should vanish in this limit. This
expectation happens to be almost true, in the sense that in Eq. (2.2), one finds Ci = 0 and we are left
with the mild, not dangerous, logarithmic divergence. In terms of orbifolds, the N = 4→N = 2
spontaneous susy breaking is implemented by a Z2 action that is free. In Sect. 3, we will review
the extension of this mechanism to the case of Z2×Z2 moduli-deformed fermionic constructions,
where N = 1 is further spontaneously broken to N = 0 by a SSS mechanism [11]. However, due
to the free action of (at least) one of the two Z2 actions, the resulting models are incompatible with
the requirement of chirality of the massless spectrum, already at the level of N = 1.

2.2 Effective potential

The 1-loop effective potential induced by the total spontaneous breaking of N ≥ 1 supersym-
metries by a SSS mechanism is proportional to m4

3/2, up to corrections of order e−cMs/m3/2 , where
c = O(1). This can be seen in heterotic and type II string orbifold models or moduli-deformed
fermionic constructions. The N ≥ 1→N = 0 spontaneous breaking can be implemented via a
Z2 shift along some large internal directions (this shift should be distinguished from some eventual
Z2×Z2 orbifold action). For simplicity, we again suppose that a single direction of radius R is
large and involved in the susy breaking.

In this case, the winding modes along this direction as well as the “twisted” states (i.e. strings
closed up to the shift) have squared masses of order R2, which implies their contributions to the
vacuum amplitude are exponentially suppressed. We are left with the evaluation of a trace over the
KK states of the “untwisted” sector, the original spectrum of the parent model. (1+(−1)G)/2 is

5
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inserted in the trace, where G is the shift generator. The parent model being supersymmetric, the
non-trivial result arises from the (−1)G ≡ (−1)m insertion that leads to the KK contribution

∑
m
(−1)me−πτ2(

m
R )

2
=

R
√

τ2
∑
m̃

e−π
R2
τ2
(m̃+ 1

2 )
2
, (2.3)

where τ ≡ τ1 + iτ2 is the Teichmuller parameter of the genus-1 surface and the r.h.s. is obtained by
Poisson resummation. This expression shows the very important fact that in the integral over the
fundamental domain F , the region τ2 . R2 is exponentially suppressed. Some remarks follow :

• The supermassive modes (they contribute as e−πτ2(M/Ms)
2
, with M & Ms) as well as the non-level

matched ones (they contribute for τ2 ' 1) yield exponentially suppressed corrections. As
claimed before about the threshold corrections, the dominant contributions arise from the
pure KK states associated to the large internal space.

• Up to exponentially suppressed terms, the τ2-integral can be extended to the ray τ2 > 0. Note
that this remains true in a pure KK field theory : The tower of states regularizes the UV and
there is no need to introduce a UV cutoff for the vacuum energy to be finite, provided that
the initial spectrum is supersymmetric.4

• Finally, the change of variable τ2 → τ2/R2 in the integral that arises in the 1-loop effective
potential leads the announced result,

V1-loop = (nF−nB)
(eφ Ms)

4

(2π)3 ∑
m̃

∫ +∞

0

dτ2

2τ3
2

R
√

τ2
e−π

R2
τ2
(m̃+ 1

2 )
2

= ξ (nF−nB)

(
eφ Ms

R

)4

= ξ (nF−nB)m4
3/2 , (2.4)

where nF and nB count the numbers of massless fermions and bosons in the parent theory that
remain massless after breaking, while ξ is a positive constant. More generally, when n large internal
directions are involved in the susy breaking, ξ is a positive function of the complex structure moduli
of the associated n-dimensional space.

Having m3/2 small compared to the string scale guarantees that V1-loop yields corrections to
the observable sector tree level masses to be small. Moreover, if nF > nB, the run away behavior of
m3/2 induces naturally the desired “gauge hierarchy”, m3/2�Ms. This happens dynamically as the
Universe expands [20], during the cosmological era that precedes the electroweak phase transition
at which the stabilization of m3/2 is expected to occur, due to radiative corrections [21].

It is important to stress again that the scaling m4
3/2 arises when the infinite towers of light KK

states are taken into account. To appreciate this fact and its consequences for the mass corrections
to be small, one can compare the situation with MSSM-like models. The latter are seen as effective
field theories, defined in rigid spacetime, with N = 1 supersymmetry softly broken. In this case,

4This finiteness in the UV is similar to that encountered in the computation of the free energy of a system at finite
temperature, provided that the zero temperature vacuum energy is finite, which is the case in field theory if the spectrum
is supersymmetric.
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the tree level potential Vtree contains mass terms at most of the order of the electroweak scale, to
which one adds at 1-loop

V1-loop = Str
∫ Λ√

2 d3k
(2π)3

1
2

√
k2 +M2 . (2.5)

In this expression, M is the tree level mass operator and Λ/
√

2 > ||k|| is a UV cutoff of the order
of the GUT, string or Planck scale. The integral over the 3-momentum k can easily be computed
explicitly. However, it is more illuminating to expend the result in powers of M/Λ, a fact that is
allowed since the mass spectrum is bounded by Λ :

V1-loop =
1

64π2

(
Λ

4StrM0 +2Λ
2StrM2 +StrM4 ln

(
M2

2Λ2

)
− 1

2
StrM4 +O

(
Str

M6

Λ2

))
. (2.6)

In this expression, the quartic divergence in Λ is actually absent, due to equal numbers of bosons
and fermions, StrM0 = 0. In rigid spacetime, the problem of having a very large cosmological
constant is not addressed and StrM2 is allowed to be non-trivial. However, in softly broken su-
persymmetry, this term turns out to be field-independent. Since m3/2 in this context is a parameter
and not a field, this means in practice that StrM2 is independent of the Higgs field. Thus, there is
no loop correction of order Λ2 to the Higgs squared mass and the latter gets only contributions of
order m2

3/2 from the remaining terms in V1-loop. For small enough susy breaking scale, the gauge
hierarchy between the Higgs’s VEV (and therefore the Standard Model’s masses) and the cutoff is
then guaranteed.

However, at a more fondamental level, the derivation of MSSM-like models from N = 1
no-scale supergravities raises new constraints. When N = 1 (or N = 2) local supersymmetry is
spontaneously broken to N = 0, helicity supertraces arguments yield [22]

StrM0 = 0 , StrM2 = c2 m2
3/2 , StrM4 = c4 m4

3/2 , (2.7)

for some scalar field-dependent c2 and c4 (independent of m3/2). Note that c2 takes into account the
contributions arising from the observable (MSSM-like) spectrum, the gravitational sector, as well
as the hidden sector. When c2 6= 0, the quadratically divergent Λ2-term induces
(i) a very large contribution to the cosmological constant we now have to face
(ii) and a destabilization of the gauge hierarchy [13] : m3/2 is now a field and minimizing V1-loop

with respect to it yields a VEV 〈m3/2〉 either equal to 0 (no supersymmetry breaking) or of order Λ

(no hierarchy).
Thus, phenomenologically viable supergravity theories in which loop corrections take into account
a finite number of degrees of freedom require c2 = 0, which is a strong constraint on the observable
and non-observable spectra, referred as “Large Hierarchy Compatible” (LHC) condition [13].

To summarize, the no-scale models describe the total spontaneous breaking of N supersym-
metries, with the lightest gravitino mass m3/2 parametrizing at tree level a flat direction of a positive
semi-definite potential. When the susy breaking arises from a (stringy) Scherk-Schwarz mechanism
in string theory or in KK no-scale supergravity, provided the gravitino mass is small compared to
the string scale, there are infinite towers of light KK states that must be taken into account in the
loop corrections. This yields a 1-loop effective potential that scales as (nF−nB)m4

3/2, up to correc-

tions of order e−cMs/m3/2 . If the gauge hierarchy is stable, the cosmological constant is however still

7
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very large, compared to the currently observed one, since (Ms/R)4 = O(10−56)M4
P � 10−120M4

P.
We are thus invited to consider a subclass of “super no-scale models” [14] characterized by nF = nB,
which automatically go beyond the m4

3/2 scaling. In this case, the 1-loop effective potential is es-

sentially vanishing, being actually of order 10−(c1013). In other words, in super no-scale models,
the no-scale structure persists at 1-loop, namely flatness of the direction parametrized by m3/2 in a
positive semi-definite effective potential, as long as m3/2 < Ms.

Since nF and nB count the total number of massless fermions and bosons, for a given observ-
able sector, the relation nF = nB imposes a constraint on the hidden sector, which seems in the spirit
of the LHC condition. However, nF− nB is not strictly speaking a constant, since it depends on
moduli fields. In Sect. 4, we show that among the models of Sect. 3, where no decompactification
problem arises, the 1-loop effective potential in some cases drives dynamically the moduli that are
not involved in the susy breaking to enhanced gauge symmetry points, such that the extended value
of nB equals nF [14]. These models are thus the first examples of super no-scale models. They
are realized in moduli-deformed fermionic construction, where susy is spontaneously broken to
N = 0 by a SSS mechanism.

Note that pushing m3/2 towards Ms, the KK masses approach those of generic massive string
states. The latter now contribute substantially to V1-loop, which does not a prioti vanish any-
more. However, it is remarkable that in the examples of super no-scale models of Sect. 4, no
Hagedorn-like transition arises for any susy breaking scale. In other words, contrary to the case
of temperature-like susy breaking, there are no state admitting winding numbers along directions
involved in the susy breaking that become tachyonic [14].

3. A solution to the decompactification problem

In this section, we consider gauge couplings in models, where a SSS mechanism implements
an N = 1→N = 0 spontaneous breaking at a low scale. Our aim is to find conditions that avoid
the decompactification problem [11].

3.1 The models

In heterotic string in four dimensional Minkowski space, the gauge coupling threshold correc-
tions at 1-loop take the form [15, 16]

∆
i =

∫
F

d2τ

τ2

(
1
2 ∑

a,b
Q[ab](2v)

(
P2

i (2w̄)− ki

4πτ2

)
τ2 Z[ab](2v,2w̄)−bi

)∣∣∣∣∣
v=w̄=0

+bi log
2e1−γ

π
√

27
,

(3.1)
where Z[ab](2v,2w̄) is a refined partition function for given spin structures a,b ∈ Z2. Pi(2w̄) ≡
−∂ 2

w̄/π2 ≡ i∂τ̄/π acts on the right-moving sector as the squared charge operator of the gauge group
factor Gi, while Q[ab](2v) acts on the left-moving sector as the helicity operator,5

Q[ab](2v) =
1

16π2

∂ 2
v (θ [

a
b](2v))

θ [ab](2v)
− i

π
∂τ logη ≡ i

π
∂τ

(
log

θ [ab](2v)
η

)
. (3.2)

5Our conventions for the Jacobi functions θ [ab](ν |τ) (or θα (ν |τ), α = 1, . . . ,4) can be found in [23].
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From now on, we consider Z2×Z2 moduli-deformed fermionic models, where N = 1 is
spontaneously broken by a SSS mechanism. The associated genus-1 refined partition function is

Z(2v,2w̄) =
1

τ2(ηη̄)2
1
2 ∑

a,b

1
2 ∑

H1,G1

1
2 ∑

H2,G2

eiπ(a+b+ab) θ [ab](2v)
η

θ [a+H1
b+G1

]

η

θ [a+H2
b+G2

]

η

θ [a+H3
b+G3

]

η

× 1
2N ∑

hi
I ,g

i
I

SL

[
a,hi

I ,HI

b,gi
I ,GI

]
Z2,2

[
hi

1
gi

1

∣∣∣H1
G1

]
Z2,2

[
hi

2
gi

2

∣∣∣H2
G2

]
Z2,2

[
hi

3
gi

3

∣∣∣H3
G3

]
Z0,16

[
hi

I ,HI

gi
I ,GI

]
(2w̄) , (3.3)

where our notations are as follows :

• The Z2,2 conformal blocks are the contributions of the three internal 2-tori, whose coordinates
are shifted and twisted. Denoting the Z2-shifts characters as (hi

I,g
i
I), i = 1,2, I = 1,2,3 and

the Z2-twist characters as (HI,GI), where (H3,G3)≡ (−H1−H2,−G1−G2), we have

Z2,2

[
h1

I ,h
2
I

g1
I ,g

2
I

∣∣∣HG]=


Γ2,2

[
h1

I ,h
2
I

g1
I ,g

2
I

]
(TI,UI)

(ηη̄)2 , when (HI,GI) = (0,0) ,

4ηη̄

θ [1−HI
1−GI

] θ̄ [1−HI
1−GI

]
δ∣∣h1

I HI
g1

I GI

∣∣,0mod2
δ∣∣h2

I HI
g2

I GI

∣∣,0mod2
, when (HI,GI) 6= (0,0) , (3.4)

where Γ2,2 is a shifted lattice that depends on the TI and UI Kähler and complex structure
moduli of the Ith 2-torus.

• Linear contraints on the shifts (hi
I,g

i
I) and twists (HI,GI) may be imposed, leaving effectively N

independent shift characters.

• Z0,16 denotes the contribution of the 32 extra right-moving worldsheet fermions. Its dependance
on the shift and twist characters may generate discrete Wilson lines, which break partially
E8×E8 or SO(32).

• The first line contains the contribution of the spacetime light-cone bosons, with that of the left-
moving fermions.

• SL is a conformal block-dependent sign that implements the SSS mechanism. If SL is identically
equal to 1, the model is N = 1 supersymmetric. However, a non-trivial SL correlating
the spin structure (a,b) to some lattice charges (hi

I,g
i
I) implements the N = 1→N = 0

spontaneous breaking.

For the decompactification problem not to arise, we impose one of the three N = 2 sectors to
be realized as a spontaneous breaking of N = 4. This can be implemented by demanding the Z2

action, whose characters are (H2,G2), to be free. Its generator twists the 2nd and 3rd 2-tori (i.e. the
directions X6,X7,X8,X9 in bosonic language) and shifts some directions of the 1st 2-torus, say X5.
To simplify our discussion, we take the generator of the second Z2, whose characters are (H1,G1),
to not be free : It twists the 1st and 3rd 2-tori, and fixes the 2nd one. Similarly, we suppose the
product of the two generators, whose characters are (H3,G3), twists the 1st and 2nd 2-tori, and fixes
the 3rd one. These restrictions impose the moduli T2,U2 and T3,U3 not to be far from 1, in order to

9
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avoid the decompactification problem to occur from the other two N = 2 sectors. Thus, the final
SSS N = 1→N = 0 spontaneous breaking must involve the moduli T1,U1 only, for the gravitino
mass to be light. This breaking is implemented via a shift along the 1st 2-torus, say X4, and a
non-trivial choice of SL. Therefore, the sector (H1,G1) = (0,0) realizes the pattern of spontaneous
breaking N = 4→N = 2→N = 0, while the two other N = 2 sectors, which are associated to
the 2nd and 3rd 2-tori, are independent of T1 and U1 and thus remain supersymmetric. As a result,
we have in the two following independent modular orbits :

SL = eiπ(ag1
1+bh1

1+h1
1g1

1) , when (H1,G1) = (0,0) ,

SL = 1 , when (H1,G1) 6= (0,0) . (3.5)

Following the conventions chosen in the above paragraph, we have (h2
1,g

2
1)≡ (H2,G2) and the

1st 2-torus lattice takes the explicit form6

Γ2,2

[
h1

1,H2

g1
1,G2

]
(T1,U1) = ∑

mi,ni

(−)m1g1
1+m2G2 e2iπτ[m1(n1+ 1

2 h1
1)+m2(n2+ 1

2 H2)] ×

e−
πτ2

ImT1ImU1
|T1(n1+ 1

2 h1
1)+T1U1(n2+ 1

2 H2)−U1m1+m2|2 . (3.6)

This expression can be used to find the squared scales of spontaneous N = 4→ N = 2 and
N = 2→N = 0 breaking,7

M2
s

ImT1 ImU1
, m2

3/2 =
|U1|M2

s

ImT1 ImU1
, (3.7)

the latter being identified with the gravitino mass squared in the full N = 0 theory. To impose these
scales to be small compared to the string scale, we consider the regime ImT1� 1 and U1 = O(1).

3.2 Conformal block by conformal block analysis

The threshold corrections can be analyzed in each conformal block [11]. Starting with those
where (H1,G1) = (0,0), the discussion is facilitated by summing over the spin structures. Fo-
cussing on the relevant parts of the refined partition fonction Z, we have

1
2 ∑

a,b
eiπ(a+b+ab) eiπ(ag1

1+bh1
1+h1

1g1
1) θ [ab](2v)θ [ab]θ [

a+H2
b+G2

]θ [a−H2
b−G2

]

= eiπ(h1
1g1

1+G2(1+h1
1+H2))θ [

1−h1
1

1−g1
1
]2(v)θ [

1−h1
1+H2

1−g1
1+G2

]2(v) , (3.8)

which shows how many odd θ1(v) ≡ θ [11](v) functions (or equivalently how many fermionic zero
modes in the path integral) arise for given characters (h1

1,g
1
1) and (H2,G2).

6There are actually 6 distinct choices of shifts along the 1st 2-torus to implement the N = 4 → N = 2 and
N = 1→ N = 0 spontaneous breaking. However, they are all equivalent, up to permutations of the sectors to be
discussed in the next section [11].

7We display them for Re(U1) ∈ (−1,1].
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Conformal block A : (h1
1,g

1
1) = (0,0), (H2,G2) = (0,0)

This block is proportional to θ [11]
4(v) = O(v4) and arises, up to an overall 1/23 normalization

factor, from the N = 4 spectrum of the parent supersymmetric theory. The action of the helicity
operator being O(v2) (see Eq. (3.2)), the contribution to the thresholds is trivial, ∆i

A = 0.

Conformal blocks B : (h1
1,g

1
1) 6= (0,0), (H2,G2) = (0,0)

They are proportional to θ [
1−h1

1
1−g1

1
]4(v) = O(1) and the action of the helicity operator yields a

non-trivial contribution ∆i
B to the gauge coupling thresholds. However, the winding number along

the very large periodic direction X4 being 2n1 +h1
1, the blocks with h1

1 = 1 are exponentially sup-
pressed, compared to the remaining one, with (h1

1,g
1
1) = (0,1). Up to an overall factor 1/22, the

latter is the contribution of the spectrum considered in the conformal block A, but in the sponta-
neously broken phase, N = 4→N = 0. It leads to

∆
i
B =

bi
B

4
∆B−

ki

4
YB , (3.9)

where ∆B and YB are dominated by the light KK states associated to the 1st 2-torus,

∆B =− ln
(

π2

4
|θ2(U1)|4 ImT1 ImU1

)
+O

(
e−c
√

ImT1
)
,

YB =−2+dGB−nFB

3π3
1

ImT1
E(1,0)(U1|2)+O

(
e−c
√

ImT
)
. (3.10)

In YB, we use “shifted real analytic Eisenstein series”, which are defined as

E(g1,g2)(U |s) = ∑
m̃1,m̃2

′ (ImU)s

|m̃1 +
1
2 g1 +(m̃2 +

1
2 g2)U |2s

. (3.11)

As expected, for large 1st 2-torus volume ImT1, the threshold correction ∆i
B scales like lnImT1 and

not the volume itself. Moreover, it contains a gauge group factor-dependent contribution propor-
tional to a β -function coefficient, which involves Casimir coefficients,

bi
B =−8

3
{

C(A i
B)−C(R i

B)
}
. (3.12)

The term −8
3C(A i

B) comes from the bosons of some initially massless N = 4 vector multiplets in
the parent N = 4 model that remain massless. These bosons (1 vector and 2 real scalars) are in
the adjoint representation A i

B of a gauge group factor Gi
B. The contribution 8

3C(R i
B) arises from

the fermions of some initially massless N = 4 vector multiplets in the parent theory that remain
massless. They are 4 Majorana fermions in a spinorial representation R i

B of Gi
B. On the contrary,

YB is a gauge group factor-independent contribution. It is proportional to the difference between
the numbers of massless bosons and massless fermions, 8(2+dGB−nFB). In this expression, the 2
is associated to the spacetime light-cone coordinates, dGB is the dimension of the full gauge group
realized in the conformal block B and 8nFB is the number of massless fermionic degrees of freedom
in this block.

11



P
o
S
(
P
L
A
N
C
K
 
2
0
1
5
)
0
7
0

super no-scale Costas Kounnas

Conformal blocks C : (h1
1,g

1
1) = (0,0), (H2,G2) 6= (0,0)

They are proportional to θ [11](v)
2θ [1−H2

1−G2
]2(v) = O(v2) and the helicity operator yields a con-

tribution ∆i
C to the thresholds. Since the winding numbers along the large periodic direction X5 are

2n2 +H2, the blocks with H2 = 1 are exponentially suppressed, compared to the remaining one,
with (H2,G2) = (0,1). Up to an overall factor 1/22, this block is the contribution of a spectrum
realizing the spontaneous N = 4→NC = 2 breaking, which yields

∆
i
C =

bi
C
4

∆C−
ki

4
YC , (3.13)

where the light KK states dominate :

∆C =− ln
(

π2

4
|θ4(U1)|4 ImT1 ImU1

)
+O

(
e−c
√

ImT1
)
,

YC =−2+nVC −nHC

3π3
1

ImT1
E(0,1)(U1|2)+O

(
e−c
√

ImT
)
. (3.14)

As expected, the large ImT1 behavior is logarithmic. The gauge group factor-dependent part de-
pends on the β -function coefficient

bi
C =−2

{
C(A i

C)−C(R i
C)
}
, (3.15)

which is obtained from the massless NC = 2 vector multiplets feeling the adjoint representation A i
C

of a gauge group factor Gi
C, and from charged hypermultiplets in the representation R i

C of Gi
C. In

the gauge group factor-independent contribution YC, nVC and nHC are the total numbers of massless
vector multiplets and hypermultiplets realized in the block C.

Conformal blocks D : (h1
1,g

1
1) = (H2,G2) 6= (0,0)

They are proportional to θ [1−H2
1−G2

]2(v)θ [11](v)
2 =O(v2) and contribute to the thresholds in a way

similar to that of the conformal blocks C. The dominant contribution arises again for (H2,G2) =

(0,1) and is associated, up to an overall factor 1/22, to a spectrum realizing a spontaneous N =

4→ND = 2 breaking. The latter is realized via a Z2 action, whose generator twists the 2nd and
3rd 2-tori, and effectively shifts both directions X4 and X5. Note that the NC = 2 and ND = 2
supersymmetries are distinct. The contribution to the thresholds is

∆
i
D =

bi
D
4

∆D−
ki

4
YD , (3.16)

where

∆D =− ln
(

π2

4
|θ3(U1)|4 ImT1 ImU1

)
+O

(
e−c
√

ImT1
)
,

YD =−2+nVD−nHD

3π3
1

ImT1
E(1,1)(U1|2)+O

(
e−c
√

ImT
)
, (3.17)

with logarithmic large ImT1 behavior. The β -function coefficient

bi
D =−2

{
C(A i

D)−C(R i
D)
}

(3.18)

12
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arises from the massless ND = 2 vector multiplets in the adjoint representation A i
D of a gauge

group factor Gi
D, and from charged hypermultiplets in the representation R i

D of Gi
D. nVD and nHD

are the numbers of massless vector multiplets and hypermultiplets realized in the block D.

Conformal blocks E : h1
1G2−g1

1H2 6= 0
Since the defining conditions of the conformal blocks A, . . . ,D are the solutions to the equa-

tion
∣∣∣h1

1 H2

g1
1 G2

∣∣∣= 0, the remaining blocks E have non-vanishing determinants. Their contributions are

proportional to θ [
1−h1

1
1−g1

1
]2(v)θ [1−h1

1+H2

1−g1
1+G2

]2(v) = O(1) and the action of the helicity operator gives a

non-trivial correction ∆i
E to the thresholds. However, non-vanishing of the determinant implies

(h1
1,H2) 6= (0,0), which shows that all states contributing in these blocks have non-trivial wind-

ing numbers along X4, X5 or both. Therefore, their contributions are exponentially suppressed,
∆i

E = O
(

e−c
√

ImT1

)
.

After having analyzed all conformal blocks satisfying (H1,G1) = (0,0), we proceed with the
study of the modular orbit (H1,G1) 6= (0,0). The SSS sign SL is now trivial, as indicated in Eq.
(3.5). Since the 1st 2-torus is twisted, these blocks are independent of the moduli T1,U1 and thus
the susy breaking scale. They can be analyzed as in the case of Z2×Z2 N = 1 supersymmetric
fermionic models. Actually, summing over the spin structures, the relevant terms in the refined
partition function Z become

1
2 ∑

a,b
eiπ(a+b+ab)

θ [ab](2v)θ [a+H1
b+G1

]θ [a+H2
b+G2

]θ [a−H1−H2
b−G1−G2

] =

eiπ(G1+G2)(1+H1+H2) θ [11](v)θ [1−H1
1−G1

](v)θ [1−H2
1−G2

](v)θ [1+H1+H2
1+G1+G2

](v) , (3.19)

which invites us to split the discussion in three parts.

Conformal blocks of the 2nd plane : (H2,G2) = (0,0)
The reference to the 2nd plane means that the 2nd internal 2-torus is fixed by the non-free action

of the Z2, whose characters are (H1,G1). These blocks are proportional to θ [11]
2(v)θ [1−H1

1−G1
]2(v) =

O(v2) and the helicity operator yields a non-trivial correction ∆i
2 to the thresholds. Adding the

trivial contribution arising from the conformal block A, up to an overall factor 1/2, one has to
compute the threshold corrections arising from an N2 = 2 supersymmetric spectrum, with N2 = 2
β -function coefficient bi

2. In the case of (2,2) superconformal symmetry on the worldsheet, the
result is

∆
i
2 =

bi
2

2
∆(T2,U2)−

ki

2
Y (T2,U2) , (3.20)

where

∆(T,U) =− ln
(

4π
2∣∣η(T )

∣∣4 ∣∣η(U)
∣∣4 ImT ImU

)
,

Y (T,U) =
1
12

∫
F

d2τ

τ2
Γ2,2(T,U)

[(
Ē2−

3
πτ2

) Ē4Ē6

η̄24 − ̄+1008
]
. (3.21)

In these expressions, Γ2,2 is the unshifted lattice associated to the 2nd 2-torus, E2,4,6 = 1+O(q) are
holomorphic Eisenstein series of modular weights 2,4,6, where q≡ e2iπτ , and j = 1

q +744+O(q)

13
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is holomorphic and modular invariant.

Conformal blocks of the 3rd plane : (H1,G1) = (H2,G2)
In this case (H3,G3) = (0,0), which means that the 3rd 2-torus is fixed by the combined action

of the generators of the two Z2’s. As in the case of the 2nd plane, these blocks are proportional to
θ [11]

2(v)θ [1−H1
1−G1

]2(v) = O(v2) and the contribution ∆i
3 to the thresholds is of identical form,

∆
i
3 =

bi
3

2
∆(T3,U3)−

ki

2
Y (T3,U3) , (3.22)

where bi
3 is the associated N3 = 2 β -function coefficient. Notice that the NC = 2, ND = 2, N2 = 2

and N3 = 2 supersymmetries we have encountered are all distinct.

Conformal blocks with N = 1 : H1G2−G1H2 6= 0
The remaining blocks have non-trivial determinant,

∣∣H1 H2
G1 G2

∣∣ 6= 0. Acting on them with the
helicity operator, the result is proportional to

∂
2
v

(
θ [11](v)θ [1−H1

1−G1
](v)θ [1−H2

1−G2
](v)θ [1+H1+H2

1+G1+G2
](v)
)∣∣∣

v=0
∝ ∂

2
v

(
θ1(v)θ2(v)θ3(v)θ4(v)

)∣∣∣
v=0

= 0 ,
(3.23)

thanks to the oddness of θ1(v) and evenness of θ2,3,4(v). Thus, these conformal blocks do not
contribute to the thresholds, ∆i

N =1 = 0.

3.3 Universal running gauge couplings

All the above results can be summarized by introducing moduli-dependent squared masses [11],

M2
B =

M2
s

|θ2(U1)|4 ImT1 ImU1

M2
C =

M2
s

|θ4(U1)|4 ImT1 ImU1

M2
D =

M2
s

|θ3(U1)|4 ImT1 ImU1

M2
I =

M2
s

16
∣∣η(TI)|4

∣∣η(UI)|4 ImTI ImUI
= O(M2

s ), I = 2,3, (3.24)

and absorbing the gauge group-independent contributions Y (TI,UI) in a “renormalized string cou-
pling” as [16]

16π2

g2
renor

=
16π2

g2
s
− 1

2
Y (T2,U2)−

1
2

Y (T3,U3) . (3.25)

In terms of these notations, the running effective gauge coupling at energy scale Q2 = µ2 π2

4 takes
a universal form,

16π2

g2
i (Q)

= ki 16π2

g2
renor

−bi
B

4
ln
(

Q2

Q2 +M2
B

)
−

bi
C
4

ln
(

Q2

Q2 +M2
C

)
− bi

D
4

ln
(

Q2

Q2 +M2
D

)

−
bi

2
2

ln
(

Q2

M2
2

)
−

bi
3

2
ln
(

Q2

M2
3

)
+O

(
m2

3/2

M2
s

)
, (3.26)
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which depends only on five model-dependent β -function coefficients. In this expression, we have
shifted M2

B,C,D→Q2+M2
B,C,D to implement the thresholds at which the sectors B, C or D decouple,

i.e. when Q exceeds MB, MC or MD. Thus, the expression for g2
i (Q) is valid up to cMs, at which

massive states we have neglected start to contribute substantially.
Before concluding this section, we would like to justify that at the N = 1 level, the Z2×Z2

models, with at least one freely acting Z2, describe a non-chiral spectrum. In general, in the Z2×Z2

models, the chiral families arise from the fixed points. If the Z2, with characters (H2,G2), is freely
acting, then the 1st plane is not fixed (all states in this sector are massive) and chiral families may
only arise from the 2nd and 3rd planes. Reversing the order of the two Z2 actions, the model can be
seen as follows. The Z2, with characters (H1,G1), realizes the breaking (“hard” or spontaneous)
from N = 4 to N = 2, while the Z2, with characters (H2,G2), realizes the spontaneous breaking
N = 2→N = 1. However, the massless twisted spectrum associated to the 2nd and 3rd planes
is independent of the modulus that is the order parameter of the spontaneous N = 2→N = 1
breaking. Taking the (large volume) limit in which N = 2 is restored, one concludes that this
spectrum respects exact N = 2 supersymmetry at tree level, and is therefore non-chiral.

Moreover, implementing a final N = 1→N = 0 spontaneous breaking via a shift along the
1st 2-torus only (if the other two planes are fixed, this is required to avoid the decompactification
problem), the degeneracy of the chiral superfields realizing the twisted hypermultiplets of the 2nd

and 3rd planes cannot be lifted.

4. Super no-scale models

In this section, we still consider moduli-deformed fermionic constructions, where N = 4,
2 or 1 supersymmetry is spontaneously broken to N = 0 via a SSS mechanism, and where the
decompactification problem does not arise. Our aim is to show that in this setup, super no-scale
models exist [14]. In other words, the no-scale structure persists in some cases at 1-loop, for
low supersymmetry breaking scale. We also show that these models do not develop tachyonic
instabilities at tree level, even when the supersymmetry breaking scale is high.

4.1 Relevance of the conformal blocks B

In four dimensional Minkowski space, our interest is focussed on the 1-loop effective potential,
which takes in general the following form, in terms of the partition function Z,

V1-loop =−
1

(2π)4

∫
F

d2τ

2τ2
2

Z|v=w̄=0 . (4.1)

In the Z2×Z2 models considered in Sect. 3, the generator that twists the 2nd and 3rd 2-tori is also
shifting the direction X5, while the final SSS N = 1→N = 0 breaking is introduced as a shift
along X4. The 1st 2-torus moduli satisfy ImT1� 1, U1 =O(1), which guaranties m3/2�Ms, while
the 2nd and 3rd 2-tori, which are fixed by the two remaining non-trivial group elements of Z2×Z2,
have moduli T2,U2 and T3,U3 not far from 1, for the decompactification problem not to arise.

In these models, we have seen that the conformal blocks A, C, D and those associated to
the 2nd plane, 3rd plane, as well as the N = 1 blocks are supersymmetric. Thus, they do not
contribute to the vacuum energy, V1-loop. Moreover, among the remaining blocks B and E, which

15
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are not supersymmetric, the second arise from states, with non-trivial winding numbers along X4,
X5 or both. Therefore, the contribution of the blocks E is exponentially suppressed, O(e−c

√
ImT1),

compared to that of the blocks B, which is the only one we need to evaluate in practice. The result is

V1-loop =
1
4

8(nFB−2−dGB)

16π7
1

(ImT1)2 E(1,0)(U1|3)+O
(

e−c
√

ImT1
)
, (4.2)

which is proportional to m4
3/2, as explained in the paragraph before Eq. (2.4). The coefficient

8(nFB −2−dGB) is the number of massless fermions minus the number of massless bosons in the
parent N = 4→N = 0 theory. The overall factor 1/4 is the normalization to be added in the
Z2×Z2, N = 1→N = 0 case. This normalization factor becomes 1/2, in the N = 2→N = 0
models realized with the single freely acting Z2, whose characters are (H2,G2). In other words,
in the present context, to show that some N = 1 or N = 2 no-scale model is actually super no-
scale, it is enough to consider its parent N = 4→N = 0 theory and show it satisfies nF−nB ≡
8(nFB−2−dGB) = 0.

4.2 Examples of super no-scale models

Motivated by the previous discussion, we are going to construct an N = 4 super no-sacle
model. Our starting point is the genus-1 partition function of the exact N = 4, E8×E ′8 heterotic
string compactified on T 2×T 2×T 2, which takes the factorized form

ZN =4 = O(0)
2,2 O(1)

2,2 O(2)
2,2 O(3)

2,2
1
2 ∑

a,b
(−)a+b+ab θ [ab]

4

η4
1
2 ∑

γ,δ

θ̄ [
γ

δ
]8

η̄8
1
2 ∑

γ ′,δ ′

θ̄ [
γ ′

δ ′ ]
8

η̄8 , (4.3)

where O(0)
2,2 denotes the contribution of the spacetime light-cone coordinates and the O(I)

2,2, I = 1,2,3,
stand for the contributions of the T 2’s directions,

O(0)
2,2 =

1
τ2 (ηη̄)2 , O(I)

22 =
Γ2,2(TI,UI)

(ηη̄)2 , I = 1,2,3 . (4.4)

Defining the holomorphic SO(2N) characters as follows,

O2N =
θ [00]

N +θ [01]
N

2ηN , V2N =
θ [00]

N−θ [01]
N

2ηN ,

S2N =
θ [10]

N +(−i)Nθ [11]
N

2ηN , C2N =
θ [10]

N− (−i)Nθ [11]
N

2ηN , (4.5)

ZN =4 can be written in a more compact form,

ZN =4 = O(0)
2,2 O(1)

2,2 O(2)
2,2 O(3)

2,2 {V8−S8}
{

Ō16 + S̄16
}{

Ō′16 + S̄′16
}
, (4.6)

where the E8 characters are expressed as sums of SO(16) ones, Ō16 + S̄16.
Next, we define a cousin N = 4 model, obtained by implementing a Z2-shift along the di-

rection X4 that is correlated to the characters of both SO(16) factors. This is done by insert-
ing in the partition function ZN =4 the sign SR = eiπ[g1

1(γ+γ ′)+h1
1(δ+δ ′)], whose effect is to break

E8×E ′8→ SO(16)×SO(16)′.

16
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Finally, we include the non-trivial SSS sign SL = eiπ(g1
1a+h1

1b+h1
1g1

1), in order to break sponta-
neously N = 4→N = 0. In total, the non-susy partition function is obtained from Eq. (4.3) by
replacing

Γ2,2(T1,U1)→
1
2 ∑

h1
1,g

1
1

Γ2,2

[
h1

1,0
g1

1,0

]
(T1,U1) eiπ[g1

1(a+γ+γ ′)+h1
1(b+δ+δ ′)+h1

1g1
1] . (4.7)

Defining new “shifted characters” associated to the 1st 2-torus as

O(1)
2,2[

h
g] =

Γ2,2[
h,0
0,0](T1,U1)+(−)g Γ2,2[

h,0
1,0](T1,U1)

2η2η̄2 , (4.8)

the final partition function we consider is [14]

Zsss
N =0 = O(0)

2,2 O(2)
2,2 O(3)

2,2

[
O(1)

2,2[
0
0]
{

V8(Ō16Ō′16 + S̄16S̄′16)−S8(Ō16S̄′16 + S̄16Ō′16)
}

+O(1)
2,2[

0
1]
{

V8(Ō16S̄′16 + S̄16Ō′16)−S8(Ō16Ō′16 + S̄16S̄′16)
}

+O(1)
2,2[

1
0]
{

O8(V̄16C̄′16 +C̄16V̄ ′16)−C8(V̄16V̄ ′16 +C̄16C̄′16)
}

+O(1)
2,2[

1
1]
{

O8(V̄16V̄ ′16 +C̄16C̄′16)−C8(V̄16C̄′16 +C̄16V̄ ′16)
} ]

. (4.9)

Because the sign SLSR couples the Z2-shift to the left- and right-moving spinorial representations,
namely the spacetime fermions and the spinorial representations of both SO(16) factors, we shall
refer to this particular breaking as the “spin-spin-spin” (sss) breaking. The latter can be compared to
the breaking of the initial N = 4, E8×E ′8 theory using the SSS sign SL only, referred as “spin” (s)
breaking, which leads to the partition function

Zs
N =0 = O(0)

2,2 O(2)
2,2 O(3)

2,2

{
O(1)

2,2[
0
0]V8−O(1)

22 [
0
1]S8−O(1)

22 [
1
0]C8 +O(1)

22 [
1
1]O8

}{
Ō16 + S̄16

}{
Ō′16 + S̄′16

}
.

(4.10)
In this case, the shift is coupled to the spacetime fermions only, as in the models at finite tempera-
ture, and the purely right-moving conformal blocks remain factorized.

To discuss the spectra, we use the explicit form of the O(1)
2,2[

h
g] character,

O(1)
2,2[

h
g] =

1
(ηη̄)2 ∑

pL,pR

q
1
2 |pL|2 q̄

1
2 |pR|2 , (4.11)

where the sum runs overs the four integers k1,n1,m2,n2 appearing in the definitions

pL =
1√

2ImT1 ImU1

[
U1(2k1 +g)−m2 +

T1

2
(
2n1 +h

)
+T1U1n2

]
pR =

1√
2ImT1 ImU1

[
Ū1(2k1 +g)−m2 +

T1

2
(
2n1 +h

)
+T1Ū1n2

]
. (4.12)

Note that the s-breaking contains an O8Ō16Ō′16 sector, which leads to 2 tachyonic scalars, when
1
2 |pL|2− 1

2 = 1
2 |pR|2− 1 < 0. On the contrary, with the sss-breaking, the dangerous left-moving

character O8 is accompanied by a right-moving sector that starts at the massless level, V̄16V̄ ′16.
Therefore, contrary to the s-case, the sss-model is free of any Hagedorn-like instability.

We are mostly interested in the light spectrum of the sss-model, when the gravitino mass m3/2

given in Eq. (3.7) is much lower than the string scale, i.e. when ImT1� 1 and U1 = O(1). Since
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all states in the sectors O(1)
2,2[

1
g] have non-trivial winding numbers along the large compact direction

X4, they are supermassive. Thus, we only have to analyze the sectors O(1)
2,2[

0
g].

Sector O(1)
2,2[

0
0]

Massless bosons are present in the sector O(0)
2,2 O(1)

2,2[
0
0]O

(2)
2,2 O(3)

2,2V8Ō16Ō′16. They are the com-
ponents of the graviton, antisymmetric tensor and dilaton, together with the gauge bosons of a
gauge group G = G(1)×G(2)×G(3)×SO(16)×SO(16)′, where G(I) arises from the lattice of the
Ith 2-torus. We have G(1) =U(1)2, but G(I), I = 2,3, can be any group of rank 2. It is generically
U(1)2 but can be enhanced to SU(2)×U(1), SU(2)2 or SU(3), when (TI,UI) sits at particular
points. The counting of states is as follows,

d(Bosons[00]) = d(V8)
[
d(O(0)

2,2)+d(O(1)
2,2[

0
0])+d(O(2)

2,2)+d(O(3)
2,2)+d(Ō16)+d(Ō′16)

]
= 8×

[
2+2+d(G(2))+d(G(3))+8×15+8×15

]
= 8×

[
244+d(G(2))+d(G(3))

]
. (4.13)

Massless fermions are present in the sectors−O(0)
2,2 O(1)

2,2[
0
0]O

(2)
2,2 O(3)

2,2 S8(Ō16S̄′16+ S̄16Ō′16). They
are in the spinorial representations of SO(16) or SO(16)′, and their degeneracy is

d(Fermions[00]) = d(S8)
[
d(S̄′16)+d(S̄16)

]
= 8×256 . (4.14)

The above bosonic and fermionic degrees of freedom are accompanied by light towers of pure
KK states arising from the 1st 2-torus. Their momenta along the large directions X4 and X5 are 2k1

and m2, and their masses are of order m3/2.

Sector O(1)
2,2[

0
1]

Light towers of pure KK bosonic states arise in the sectors O(0)
2,2 O(1)

2,2[
0
1]O

(2)
2,2 O(3)

2,2V8(Ō16S̄′16 +

S̄16Ō′16). Their momenta along X4 and X5 are 2k+1 and m2, and their multiplicity is

d(Bosons[01]) = d(V8)
[
d(S̄′16)+d(S̄16)

]
= 8×256 . (4.15)

Light towers of pure KK fermionic states arise in the sector −O(0)
2,2 O(1)

2,2[
0
1]O

(2)
2,2 O(3)

2,2 S8Ō16Ō′16,
with momenta 2k+1 and m2. Their counting is

d(Fermions[01]) = d(S8)
[
d(O(0)

2,2)+d(O(1)
2,2[

0
1])+d(O(2)

2,2)+d(O(3)
2,2)+d(Ō16)+d(Ō′16)

]
= 8×

[
2+2+d(G(2))+d(G(3))+8×15+8×15

]
= 8×

[
244+d(G(2))+d(G(3))

]
. (4.16)

In total, the degeneracies encountered in the sectors O(1)
2,2[

0
g] yield

nF = 8×256 , nB = 8×
[
244+d(G(2))+d(G(3))

]
, (4.17)

which are equal when d(G(2))+d(G(3)) = 12, i.e. for8

G(2)×G(3) = SU(2)4 or G(2)×G(3) = SU(3)×SU(2)×U(1) . (4.18)
8If one considers a compactification on T 2×T 4, another group G2×U(1)2 is also possible, where the exceptional

Lie group G2 is realized at some special point of the Γ4,4-lattice. This case yields N = 4 and N = 2 super no-scale
models.
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Modulo T-duality, the solution SU(2)4 is obtained at the self-dual point T2 = U2 = T3 = U3 = i.
Moreover, locally around this point, some of the SU(2) factors are spontaneously broken to U(1),
so that nB decreases and V1-loop given in Eq. (4.2) becomes positive. Therefore, the 1-loop effective
potential is positive semi-definite at the above self-dual point, with flat directions m3/2 and U1. The
model is thus attracted dynamically to a point in moduli space characterized by a super no-scale
structure.

The second solution, SU(3)×SU(2)×U(1), is realized modulo T-duality at T2 =U2 = eiπ/3,
T3 =U3 arbitrary. Locally around this complex line, the gauge group G is as before spontaneously
broken to a subgroup and nB decreases. Thus, the 1-loop effective potential is locally positive semi-
definite, with flat directions m3/2, U1 and T3 = U3. Again, the model is naturally super no-scale;
the time-dependent moduli trajectories being attracted to these points.

Out of the super no-scale regime, when m3/2 = O(Ms), the effective potential does not vanish
anymore. The generic massless states listed above are not accompanied by light KK modes, the
latter having now masses of order of the string scale. However, states with non-trivial momentum
and winding numbers along the 1st 2-torus, which are supermassive in the super no-scale regime,
can be massless at special points in moduli space, when T1,U1 = O(1) :

Sector O(1)
2,2[

0
0]

Additional massless bosons arise in the sector O(0)
2,2 O(1)

2,2[
0
0]O

(2)
2,2 O(3)

2,2V8Ō16Ō′16, when 1
2 |pL|2 =

1
2 |pR|2− 1 = 0. In the case the 1st 2-torus is factorized in two circles of radii R1 and R2, these
conditions are realized for momenta and winding numbers m2 = −n2 = ±1, k1 = n1 = 0, at the
self-dual point R2 = 1, R1 arbitrary. They are two gauge bosons,

d(Extra Bosons[00]) = d(V8)×d(O(1)
2,2[

0
0]) = 8×2 , (4.19)

which enhance the gauge group factor associated to the 1st 2-torus, G(1) =U(1)×SU(2).

Sector O(1)
2,2[

1
1]

Extra massless bosons arise in the sector O(0)
2,2 O(1)

2,2[
1
1]O

(2)
2,2 O(3)

2,2 O8V̄16V̄ ′16, when 1
2 |pL|2− 1

2 =
1
2 |pR|2 = 0. For a factorized 1st 2-torus, this is realized for 2k1 +1 = 2n1 +1 =±1, m2 = n2 = 0 at
the fermionic point R1 =

√
2, R2 arbitrary. They are two scalars in the bi-vectorial representation

of SO(16)×SO(16)′, thus with multiplicity

d(Extra Bosons[11]) = d(O1
2,2[

1
1])d(V̄16)d(V̄ ′16) = 2×16×16 . (4.20)

5. Conclusion

In this work, we have considered N = 1 no-scale models in string theory, where the spon-
taneous breaking of supersymmetry to N = 0 is implemented at tree level by a SSS mechanism.
Imposing the gravitino mass m3/2 to be light, compared to the string scale, imposes a subspace of
the internal space to be large. We have recalled that this often induces large quantum corrections to
the gauge couplings, which implies the string coupling to be fine-tuned, a fact that is non-natural
and known as the “decompactification problem”. In the context of heterotic Z2×Z2 orbifolds or
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moduli-deformed fermionic constructions, we have reviewed a solution to this puzzle that is valid,
when some of the Z2 actions is freely acting [11].

We also pointed out that the smallness of m3/2 implies the 1-loop effective potential to be
dominated by KK states, and to scale generically as (nF− nB)m4

3/2, where nF and nB count the
numbers of massless fermions and bosons. If this is interesting from the point of view of the gauge
hierarchy problem, the order of magnitude of the cosmological term generated at 1-loop is still very
large, compared to the presently observed one. Thus, we have defined “super no-scale-models” as
being those for which the no-scale structure persists at 1-loop [14]. In other words, the gravitino
mass is a flat direction of a positive semi-definite 1-loop effective potential. In practice, we have
found string models that satisfy nF = nB, which yields an exponentially suppressed vacuum energy
at 1-loop for arbitrary m3/2, as long as the latter is small compared to the string scale. In these
examples, the moduli that do not participate in the susy breaking are naturally and dynamically
attracted to points characterized by the super no-scale structure.

Even if this is not a priori required, the examples of super no-scale models we have pointed out
are in the class of N = 1→N = 0, Z2×Z2 theories, where a Z2 is freely acting, thus avoiding the
decompactification problem. However, we have stressed that a Z2 free action implies the massless
spectrum to be non-chiral. Therefore, starting with semi-realistic N = 1 chiral models, it it still
challenging to find a suitable way to implement a spontaneous N = 1→N = 0 breaking that
satisfies : chirality of the N = 0 spectrum, naturalness (no fine-tuning) and analytic control, to
preserve the full predictability of the string model.

Finally, we mention that other chiral or non-chiral, non-supersymmetric models have been
considered in Ref. [24], including cases where nF = nB. However, they generically suffer from
the decompactification problem and the eventual presence of instabilities at finite points in moduli
space.
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