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We have computed Wilsonian effective action in a simple model containing scalar field with
quartic self-coupling which interacts via Yukawa coupling with a Dirac fermion. The model is
invariant under a chiral parity operation, which can be spontaneously broken by a vev of the
scalar field. We have computed explicitly Wilsonian running of relevant parameters which makes
it possible to discuss in a consistent manner the issue of fine-tuning and stability of the scalar
potential. This has been compared with the typical picture based on Gell-Mann–Low running.
Since Wilsonian running includes automatically integration out of heavy degrees of freedom, the
running differs markedly from the Gell-Mann–Low version. However, similar behavior can be
observed: scalar mass squared parameter and the quartic coupling can change sign from a positive
to a negative one due to running which causes spontaneous symmetry breaking or an instability in
the renormalizable part of the potential for a given range of scales. As for the issue of fine-tuning,
since in the Wilsonian approach power-law terms are not subtracted, one can clearly observe the
quadratic sensitivity of fine-tuning measure to the change of the cut-off scale.
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1. Introduction

The recent discovery of the Higgs boson at the Large Hadron Collider [1, 2], promotes the
question about the protection of the electroweak breaking scale to one of the most puzzling prob-
lems of fundamental physics. The observed compatibility of properties of the newly observed par-
ticle, with predictions coming from the Standard Model, additionally strengthens tension between
the standard theoretical reasoning which results in a prediction of new physics near the electroweak
scale and reality. This situation strengthens the need of revisiting the naturalness principle.

Numerous authors [3, 4, 5, 6, 7] propose new definitions of the naturalness. Our goal is less
ambitious. We shall try to state clearly a treatment of the fine-tuning based on the Wilsonian
effective action and the corresponding Wilsonian renormalization group. Idea of the Wilsonian
effective action is close to the intuitive understanding of the cut-off regularization. In a standard
discussion based on quadratic divergences, the artificial meaning of the scale of an effective theory
is given to the regularization parameter Λ. This effects in the regularization dependence of this
kind of analysis. On the contrary, in the Wilsonian method high energy modes are integrated out
in a self-consistent, regularization-independent way, and an effective theory has a well-defined
effective action. Moreover, this treatment is universal and depends very weakly on a preferred UV
completion. The main impact on the effective action from states with masses greater than the scale
of the effective theory can be parametrized by the values of couplings of the Wilsonian effective
action. Further corrections are highly suppressed as far as heavy masses are separated from the
scale of the effective theory.

Given a model where the vacuum expectation value of a scalar field can be generated with
quantum corrections, we can also show how the stability of the effective action looks like from the
point of view of the Wilsonian running. This has been compared with the standard picture based
on the Gell-Mann–Low running. Since the Wilsonian running automatically includes integration of
heavy degrees of freedom, the running differs markedly from the Gell-Mann–Low version. Nev-
ertheless, similar behaviour can be observed: the scalar mass-squared parameter and the quartic
coupling can change sign from a positive to a negative one due to running. This causes the spon-
taneous symmetry breaking or the instability in the renormalizable part of the potential for a given
range of scales. However, care must be taken when drawing conclusions, because of the truncation
of higher dimension operators. The Gell-Mann–Low running allows one to resume relatively easily
a class of operators corresponding to large logarithms to form the RGE improved effective potential
valid over a huge range of scales. In the Wilsonian approach this would correspond to following
the running of a large number of irrelevant operators, which is technically problematic.

While the simple cut-off analysis of scalar field models has been performed earlier, the goal
of the present note is to consistently use the Wilsonian approach, and to make a clear comparison
with the discussion based on the Gell-Mann-Low running.

2. Basic features of the model

2.1 Couplings

For the sake of clarity we consider a simple model that exhibits certain interesting features of
the SM. The model consists of a massless Dirac fermion ψ which couples via a Yukawa interaction
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to a real scalar field φ with a quartic self-coupling. This Lagrangian takes the form:

L = iψ /∂ψ +
1
2

∂µφ∂
µ

φ − 1
2

M2
φ

2−Y φψψ− λ

4!
φ

4. (2.1)

The above Lagrangian is symmetric under the (chiral) Z2 which acts on φ as φ →−φ and on ψ as
ψ → iγ5ψ . We consider the case of the non-zero vacuum expectation value for the field φ , which
breaks this symmetry spontaneously. In the broken symmetry phase the Lagrangian density (2.1)
expanded around the nontrivial minimum v (φ = v+ϕ) will take the form:

L = iψ /∂ψ−mψψ +
1
2

∂µϕ∂
µ

ϕ− 1
2

M′2ϕ
2−Y ϕψψ− g

3!
ϕ

3− λ

4!
ϕ

4. (2.2)

The fermion ψ allows one to model the top quark coupling to the Higgs boson, which is known
to give the main contribution to quadratic divergencies in the mass of the SM scalar and to the
high-scale instability of the quartic coupling.

This model was previously investigated with methods of the FRG in [8, 9, 10], in order to
estimate the non-perturbative bound on the Higgs boson mass. The same issue was discussed in
[11], with a slightly different Lagrangian. In [12] the stability of potential was discussed with the
help of the naive cut-off procedure.

2.2 Truncation adopted in the paper

We have calculated the Wilsonian renormalization group equations at the lowest non-trivial
order. The Wilsonian action can include an infinite number of non-renormalizable operators, how-
ever they are suppressed at the low cut-off scale. Hence our truncation in the symmetric phase
contains the following operators:

LΛ = iψΛ /∂ψΛ +
1
2

∂µφΛ∂
µ

φΛ−
1
2

M2
ΛφΛ

2−YΛφΛψΛψΛ−
λΛ

4!
φΛ

4. (2.3)

In the ordered phase it is convenient to use fluctuations ϕΛ around the vacuum expectation value
vΛ. In such a case terms generated by expansion φΛ = vΛ+ϕΛ must be included and our truncation
takes the form:

LΛ = iψΛ /∂ψΛ−mΛψΛψΛ +
1
2

∂µϕΛ∂
µ

ϕΛ−
1
2

M2
ΛϕΛ

2−YΛϕΛψΛψΛ−
gΛ

3!
ϕΛ

3− λΛ

4!
ϕΛ

4. (2.4)

Wilson coefficients M2
Λ, YΛ, λΛ as well as mΛ and gΛ are defined in [13].

Chosen truncation corresponds to the lowest non-trivial order of the Wilsonian running (in the
similar way as a 1-loop RGEs corresponds to lowest non-trivial order of the Gell-Mann–Low type
running).

3. Flow equations

It is convenient to express the Wilsonian RGE in terms of dimensionless parameters, because
then Wilsonian RGEs are a dynamical system of differential equations. We use the dimensionless
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parameters νΛ := vΛ
Λ , ΩΛ

2 := MΛ
2

Λ2 , ωΛ := mΛ
Λ and γΛ := gΛ

Λ . We define vΛ by the requirement that
the shift ϕΛ 7→ φΛ− vΛ gives the effective action without terms with odd powers1 of φΛ.

Wilsonian β -functions for Ω2
Λ and λΛ in the ordered phase read as follows:

Λ
dΩΛ

2

dΛ
=−2ΩΛ

2 +4
Y 2

Λ
(4π)2

[(
3−ωΛ

2
)(

1+4ωΛ
2
)

3(ωΛ2 +1)3 ΩΛ
2− 2ωΛ

2−2

(ωΛ2 +1)2

]

+
λΛ

(4π)2
1

(ΩΛ
2 +1)

+
γΛ

2

(4π)2

[
2
3

1
1+ΩΛ

2 −
2
3

1
(1+ΩΛ

2)2
+

ΩΛ
2

(1+ΩΛ
2)3

]
− γΛ

[
8YΛ

(4π)2
ωΛ

(1+ωΛ2)
− γΛ

(4π)2
1

(1+ΩΛ
2)
)

]
, (3.1)

Λ
dλΛ

dΛ
= 3

λ 2
Λ

(4π)2
1

(1+ΩΛ
2)2
−

2Y 4
Λ

(4π)2

[
1

(1+ωΛ2)2 −8
ωΛ

2

(1+ωΛ2)4

]
+

6γΛ
4

(4π)2
1

(ΩΛ
2 +1)4

+
8
3

λΛY 2
Λ

(4π)2

(
3−ωΛ

2
)
(1+4ωΛ

2)

(1+ωΛ2)3 +
2γ2

ΛλΛ

(4π)2

[
2
3

1
(ΩΛ

2 +1)2
− 7

(ΩΛ
2 +1)3

]
. (3.2)

We obtained Wilsonian RGEs for discussed model using methods discussed in [14].

4. Numerical solutions of RGE

The RGEs from Sec. 3 have been solved numerically. We used the 1-loop matching conditions
in order to compute initial conditions for RGE at Λ = 100 (we use units of GeV through the paper),
in terms of the measurable quantities (for definition see [13]).

The example solution with the values: mph = 174, Mph = 125, λph = 0.2, vph = 264, gph = 52.8
and Yph = 1 is presented in Fig. 1a. Double-logarithmic plot in Fig. 1a shows parameters of the
effective Wilsonian action as functions of the scale Λ. The dotted line represents the Yukawa
coupling YΛ which runs typically rather slowly. The quartic coupling λΛ runs faster, because of
the contribution from the fermionic loop. Couplings ωΛ, Ω2

Λ and γΛ for low values of Λ run
like relevant couplings due to the rescaling, but after reaching scales of the order of the masses,
they change their behaviour to a slow running near constant value. The behaviour of the above
couplings for high values of Λ is caused by quadratic divergences (or more precisely by the same
diagrams which generate quadratic divergences). The same behaviour is manifested by the vacuum
expectation value νΛ plotted as a solid line.

Solutions with different initial conditions have the same qualitative behaviour. in Fig. 2 we
plotted families of solutions with the initial conditions Mph =

3
4 125 (dashed line) and Mph =

4
3 125

(dotted line). The reference solution has been plotted as well with the solid lines.
The important observation is that the presented solutions run very close to each other for high

scales Λ. Similar behaviour can be observed, if one changes the values of other parameters. Fig. 2
1The standard treatment is such that in the ordered phase one expresses the symmetric Lagrangian density (2.3) by

the field shifted by its vev: φ 7→ ϕ + v. This shift introduces terms with the odd powers of ϕ to the Lagrangian density.
If we want to recover from the Lagrangian density expressed by ϕ , the value of vev by which φ was shifted, we need
to search for the shift ϕ 7→ φ − v such that terms with the odd powers of φ will be absent. Note that we expand around
a minimum, which means that the coefficient of the linear term vanishes.
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Figure 1: Examples of a numerical solution of (a)—Wilsonian and (b)—Gell-Mann–Low type
RGEs corresponding to: mph = 174, Mph = 125, λph = 0.2, vph = 264, gph = 52.8 and Yph = 0.5.

suggests the following understanding of the fine-tuning. If different trajectories of Wilsonian flow
toward the UV approach each other, then the small change of parameters in the effective action at
high scale, gives the effect of changing the trajectory. The change of values of the Wilson coeffi-
cients at high scale will result, in turn, in physical parameters much different than the original ones,
since the IR limit of the Wilsonian running corresponds to measurable quantities. The behaviour
presented in Fig. 2 is the sign that the fine-tuning of parameters in the effective action at high scales
is required in order to get the prescribed values of physical observables.

The example of a numerical solution for the Gell-Mann–Low type RGEs for the same theory
is given in Fig. 1b. Comparing Fig. 1b with Fig. 1a, one finds that the flow of parameters
of the Wilsonian effective action is much more complicated than the running in Gell-Mann–Low
method. One should note that the Wilsonian RGE accommodates decoupling of massive particles
i.e. corrections from particles with masses greater than Λ are strongly suppressed.

5. Fine-tuning

The standard measure ∆ci of the fine-tuning with respect to the variable ci is defined as

∆ci =
∂ logv2

∂ logci
2 , (5.1)

where ci is a coupling in the model and v is the vacuum expectation value of the field which breaks
a symmetry spontaneously (here—chiral parity). As a measure of the fine-tuning of the whole
model we take [15, 16, 17]:

∆ =

(
∑

i
∆ci

2

) 1
2

. (5.2)

We have computed ∆ci for parameters of the effective action as functions of the scale Λ.
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Figure 2: Solutions for the changed initial condition i.e. Mph multiplied (dashed) or divided (dotted)
by the factor 3

4 , compared with the original one (solid line). The flow of ωΛ, Ω2
Λ, γΛ and λΛ is

presented respectively in (a), (b), (c) and (d).

Unfortunately, the effective action2 for Λ = 0 cannot be obtained by the direct numerical
integration of RGEs.

For that reason we approximated vΛ for Λ = 0 (v0), by the value at Λ = 10−4 i.e. v10−4 . We
used Λ = 10−4, because this turns out to be the lowest scale which gives νΛ safety from numerical
errors. To sum up, we have computed the fine-tuning measure (5.1) by taking numerical derivatives
of ν10−4 with respect to dimensionless parameters ωΛ, Ω2

Λ, γΛ, λΛ, YΛ over the range of scales
10 < Λ < 106.

In Fig. 3 the measure (5.2) as a function of scale Λ is shown. The power function ∝ Λp

which has been fitted to the fine-tuning curve is shown as a dashed line. The fitted power is equal
2.19±0.02. The power-like function has been fitted over the interval 103 ≤ Λ≤ 106 (that is above
assumed mass thresholds). The reason is the visible change of behaviour of the flow of parameters
below 103.

2Wilsonian effective action in the limit Λ→ 0 reproduce 1PI effective action.
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Figure 3: The combined fine-tuning measure
(5.2) as a function of the scale Λ of the Wilso-
nian effective action. Fitted power law is given
as a dashed line.
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Figure 4: The example of a solution in which the
radiative symmetry breaking takes place. The
plot corresponds to the values YΛ = 1.461, M2

Λ =

5×1010, λΛ = 0.1 at Λ = 106.

6. Vacuum stability

An interesting issue is the question of the spontaneous symmetry breaking and the stability
of the potential seen from the point of view of the Wilsonian approach. The change of a sign of
M2

Λ during the flow toward IR indicates that the stable vacuum of the theory must have the non-
zero vacuum expectation value of the scalar field φ (as long as the quartic coupling stays positive).
Moreover, the quartic scalar coupling λΛ can run negative for higher Λ which shows the similar
behaviour as the one observed in the Gell-Mann–Low type running (Fig. 1b), known from the Stan-
dard Model. In the context of the SM, the zero of the quartic self-coupling is usually considered
as an indication of the instability of the electroweak vacuum. In the Wilsonian approach however,
simple analysis based on the quartic coupling alone is insufficient, because higher dimension op-
erators with higher powers of the scalar field φ , which we suppressed in our truncation (2.3), may
dominate the scalar potential for large values of φ . The impact coming from higher dimension
operators was recently investigated in [10, 11, 18] and [19]. To draw strong conclusions one needs
a procedure of resummation of the possibly large contributions to the scalar potential coming from
operators with all higher powers of φ . However, the observed instability of the Wilsonian quartic
coupling may be seen as an indication of a crossover behaviour at higher scales.

The example of a solution demonstrating such features is plotted in Fig. 4. For this solution
the scalar mass parameter Ω2

Λ vanishes at the scale Λ = 2.67× 104 and the quartic coupling λΛ

has a zero at Λ = 1.07×106. While investigating features of this solution one can notice a strong
dependence of the scale of the symmetry breaking on the value of the Yukawa coupling YΛ. This
fine-tuning problem makes one choose very precisely the initial condition for the Yukawa coupling
in order to make the symmetry breaking scale low.

The issue of the spontaneous symmetry breaking can be studied with the help of the numerical
approximation of the phase space presented in Fig. 5. Regions in Fig. 5 marked as "ordered phase"
are points which used as initial conditions at Λ = 1010, produce the spontaneous breaking of chiral
symmetry during the flow to Λ = 10−4. In Fig. 5a one can see that if for any scale Λ the coupling

7
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(a) The subspace of the phase space
given by the Eq. Y = 1.461.
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Figure 5: The numerical approximation of the phase space of the model given by the Lagrangian
density (2.1). Points for which the flow from Λ = 1010 to Λ = 10−4 crosses Ω2 = 0 are assumed to
be in the ordered phase.

Ω2
Λ will be lower than certain critical value Ω2

cr, then Ω2 will run negative in the IR and the chiral
parity will be spontaneously broken. Moreover as can be seen in Fig. 5b the critical value Ω2

cr is
rather sensitive to the Yukawa coupling Y . From the behaviour shown in Fig. 5b one concludes that
Ω2

cr increases when the value of Y increases, and for any value of Ω2 there should exist a critical
value of the Yukawa coupling Ycr. We conclude that once Ycr is exceeded, the radiative spontaneous
symmetry breaking appears. Hence the lower right portion of Fig. 5b gives the direct evidence of
the Coleman–Weinberg mechanism at work.

7. Extended model

In order to father investigate the decoupling of heavy fields we considered an extended model
with two scalar fields φ1 and φ2, described by the Lagrangian density of the form:

L =iψ /∂ψ +
1
2

∂µφ1∂
µ

φ1 +
1
2

∂µφ2∂
µ

φ2−
1
2

M1
2
φ

2
1 −

1
2

M2
2
φ

2
2

−Y1φ1ψψ−Y2φ2ψψ

− λ1

4!
φ1

4− λ2

4!
φ2

4− λ3

4
φ1

2
φ2

2− λ4

3!
φ1φ2

3− λ5

3!
φ1

3
φ2.

(7.1)

In the limit λ3,λ4,λ5,Y2→ 0 this theory reproduce previous theory given by the Lagrangian density
(2.1) if we identify the field φ1 7→ φ and couplings:

M1 7→M, λ1 7→ λ , Y1 7→ Y. (7.2)

Hence one can supposes that for the heavy φ2 field (the case in which we are interested in), the
Lagrangian density (2.1) will describe effective theory for presented extended model.

The Lagrangian density (7.1) is symmetric under a transformation φ1→−φ1, φ2→−φ2 and
ψ → iγ5φ . Moreover if Y2 = 0 (Y1 = 0) simultaneously with λ4 = λ5 = 0 a transformation of φ2
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(φ1) is independent from the transformation of remaining fields. Is such a case the Lagrangian
density has two independent symmetries: φ1 → −φ1 with ψ → iγ5φ and φ2 → −φ2 (φ2 → −φ2

with ψ→ iγ5φ and φ1→−φ1). If any of λ4, λ5 or both Yukawa couplings Y1, Y2 are non-zero then
fields φ1 and φ2 must have the same quantum numbers and can mix with each other. For the sake
of clarity let us concentrate on this special case.

7.1 Decoupling

It is convenient to define the quantity:

ndi =

∣∣∣∣cEXT
i − cEFF

i

cEXT
i

∣∣∣∣ (7.3)

where the cEXT
i stands for one of the following couplings appearing in (7.1): m,M1,λ1,Y1. The cEFF

i

is the coupling from the effective theory (2.1) which corresponds to cEXT
i following the equation

(7.2). The quantities 7.3 are referred to as normalized differences.
Using Wilsonian RGEs for two theories, among which one is the effective theory for the other,

one can try to find out how precise is the decoupling of heavy states in the running. We have
estimated how Wilson coefficients change with scale in two scenarios. In the first case we use
Wilsonian RGEs for the extended model to run from UV down to IR. In the second case we use
RGEs for extended model only down to an intermediate scale Λmatching, lower then the mass M2

of heavy scalar φ2. Below Λmatching we use RGEs for the effective theory with initial conditions
given by Wilson coefficients of extended model computed at the matching scale Λmatching. In Fig. 6
quantities (7.3) are plotted in two examples which differ by the choice of the scale Λmatching. The
spikes on both plots 6b and 6a correspond to the zeros i.e. the positions of matching scales Λmatching

(because our matching condition is equality of couplings cEXT
i and cEFF

i at Λmatching). In Fig. 6b
normalized differences as a functions of the scale Λ in the effective action are plotted for the case of
matching scale equal to the mass of the heavy scalar Λmatching = M2 = 105. In this case differences
between Wilson coefficients in both theories in the IR limit are of the order of these couplings. In
Fig. 6a we plotted normalized differences for the matching scale Λmatching one decade lower (with
the same initial conditions for RGEs in the extended model). One can notice that for the lower
scale Λmatching quantities 7.3 fall down rapidly.

8. Conclusions

In this paper we have used the Wilsonian effective action to investigate the fine-tuning and the
vacuum stability in a simple model exhibiting the spontaneous breaking of a discrete symmetry and
large fermionic radiative corrections which are able to destabilize the quartic scalar self-coupling.
The regulator independence of the Wilsonian RG provides a consistent and well-defined procedure
to analyze the issue of quadratic divergences. In the simplified model simulating certain features
of the SM, the Wilsonian renormalization group equations have been studied.

Numerical solutions of RGEs have revealed an interesting behaviour, caused by the same
diagrams which generate quadratic divergences. An operator relevant near Gaussian fixed point (for
example the mass parameter for the scalar particles) can run like a marginal or even an irrelevant
operator, rather than decrease with growing scale. Furthermore solutions for different physical

9
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Figure 6: Normalized difference (7.3) between running in effective theory and extended model for
matching at two scales: (a)—Λmatching = M2/10 and (b)—Λmatching = M2.

quantities flow close to each other with increasing scale. The flow in the direction of some common
values indicates the severe fine-tuning. In such a situation small changes of boundary values of
parameters at high scale produce very different vacuum expectation values for the scalar field and
other measurable quantities at low energies. We have estimated the fine-tuning as a function of
scale of the effective theory. For all parameters the adopted measure of the fine-tuning grows
rapidly.

It should be stressed that the Wilsonian RGE, in contrast to the Gell-Mann–Low running, au-
tomatically accommodate decoupling of heavy particles. As investigated in Section 7, the contribu-
tion to the flow coming from particles with masses Mheavy greater than the scale Λ of the effective
action is strongly suppressed. The main contributions to the interactions generated by heavy states
are integrated out during calculation of the effective action for Λ� Mheavy, and are included in
the effective Wilson coefficients. These properties of Wilsonian RGE explain why the fine-tuning
of the Wilson parameters is so interesting. Let us imagine a more fundamental theory (say theory
A) in which the SM is embedded. If one calculates in theory A the effective action for the scale
Λ below, but not very much below, the lowest mass of the particles from the New Physics sector,
one obtains certain values of the Wilson coefficients cA. On the other hand one can extrapolate the
flow obtained from the SM to the scale Λ and calculate the Wilson coefficients cSM. Couplings
computed in both ways should match, that is cA

Λ = cSM
Λ . If the couplings cA are different from cSM

at the level of the fine-tuning ∆c, that is cA
Λ(1±∆c) = cSM

Λ , theory A will produce the IR effective
action completely different from the SM.

We have studied the issue of the spontaneous symmetry breaking due to radiative corrections
in the Wilsonian framework. We have demonstrated that there exists a critical value Ω2

cr below
which Ω2 runs negative in the IR and the symmetry becomes spontaneously broken. Moreover, the
critical value Ω2

cr is sensitive to the Yukawa coupling Y . One can see that Ω2
cr increases when the

value of Y increases and for any value of Ω2 there exists a critical value of the Yukawa coupling
Ycr. Once Ycr is exceeded, the radiative spontaneous symmetry breaking appears, which is a direct
evidence of the Coleman–Weinberg mechanism at work.
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