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The null geodesics that describe photon orbits in the curved spacetime of a rotating electrically
charged black hole (Kerr-Newman) are solved exactly including the contribution from the cosmo-
logical constant. Thus the theory produced in this work is a complete theory for the propagation
of light signals in the field of rotating charged black holes: all of its fundamental parameters enter
the analytic solutions on an equal footing. We first solve exactly null geodesics on the sphere and
produce closed form solutions for the frame dragging of light for spherical polar and non-polar
light orbits in the Kerr-Newman-(anti)de Sitter (KN(a)dS) black hole spacetime. Our solutions are
expressed elegantly in terms of multivariable hypergeometric functions of Appell-Lauricella and
Weierstralelliptic function. We then derive the closed form analytic solution for the deflection an-
gle that an equatorial unbound light ray undergoes by a Kerr-Newman (KN) black hole. Various
limiting cases are studied. In particular the deflection angle for a non-spinning charged Reisser—
Nordstrom black hole is computed analytically in terms of Appell’s hypergeometric function Fj
or in terms of inverse Jacobian functions. The more involved problem of treating a KN black hole
as a gravitational lens, i.e. a KN black hole along with a static source of light and a static observer
both located far away but otherwise at arbitrary positions in space is solved analytically. For this
model, we derive the analytic solutions of the lens equations in terms of Appell and Lauricella

hypergeometric functions and the Weierstral modular form.
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1. Motivation

In this talk I am going to review recent results of mine, which are published in [2], in which
I have obtained closed form analytic solutions of the null geodesics in the spacetime surrounding
an electrically charged, rotating cosmological black hole, namely the Kerr-Newman-(anti) de Sitter
black hole. The KN(a)dS)metric is the most general exact stationary black hole solution of the
Einstein-Maxwell system of differential equations. The system of geodesics in the KN(a)dS black
hole (BH) solution is a completely integrable dynamical system.

The metric in Boyer-Lindquist coordinates is [1]:
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where a, M, e denote the Kerr parameter (spin), mass and electric charge of the black hole respec-
tively, while A is the cosmological constant. Also, G, c denote Newton’s gravitational constant and
speed of light respectively.
This is accompanied by a non-zero electromagnetic field F = dA with vector potential (G =
c=1):
er

A:_E(r2+a200s29)(dt_asm2 6dg). (1.4)

For the surrounding spacetime to represent a black hole, i.e. the singularity surrounded by the
horizon, the electric charge and angular momentum J must be restricted by the relation:
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The dynamical system of geodesic equations in KN(a)dS spacetime is completely integrable and
the geodesic equations can be derived by solving the relativistic Hamilton-Jacobi equation by sep-
aration of variables [2]:
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where
R :=Z2[(P +a*)E —aL)’ — AN (u2r + Q+ EX(L — aE)?), (1.10)
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Null geodesics are derived by setting 1 = 0. The quantities E, Q, L are first integrals of motion. We
use geometrized units, G = ¢ = 1, unless it is stipulated otherwise.

2. Null geodesics on the sphere and frame dragging of light

The relevant differential equation is:
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where AKN := 12 + 4% + ¢ — 2Mr, assuming A = 0 and a constant radius. It is convenient to
introduce the parameters:
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we obtain the integral equation:
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and this orbit integral can be inverted by the Weierstrall modular Jacobi form
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Now the closed form solution for the spherical polar orbit (& = 0) is: [2]
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Theorem 1.
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where o := of JA? = L = —5 B = B/ /A = a;f,z,o@” 9'/A? = ZA,Z and € denotes a
constant of integration. Also A’ is given by the expression:
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Explicitely eqn (2.9) reads: & = @o(—¢ + o' (&))) , where & is the initial value of &. The Weier-
straflinvariants are:
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The assumption of spherical orbits, results in two conditions from the vanishing of the polynomial
R(r) and its first derivative:
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which are also the conditions for the photon to escape to infinity. After a complete oscillation in
latitude, the angle of longitude, which determines the amount of dragging for the spherical photon
polar orbit in the general theory of relativity (GTR) for the KN black hole, increases by:

Theorem 2.
ApsiN = (2.14)
1 T (11 a®
= —F|{=z,=<1,—— 2.15
@ \/(a2+,@)(a2+e2+(—2+r)r)2 2 <2’ 27 ar+ Q) ' ( )
a*(e?—2r)?

where o is the real half-period of the Weierstral elliptic function g, and F (¢, 3,7,z) denotes the
Gaul} hypergeometric function. The generalisation of Theorem 2 in the presense of A is [2]:

Theorem 3. The closed form solution for the frame dragging (Lense-Thirring effect) of light that
a null spherical polar undergoes in the spacetime of a Kerr-Newman-(anti)de Sitter black hole is

[2]:
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where Fy(a,,B’,v,x,y) is Appell’s first hypergeometric function of two variables x,y and param-
eters a,f3,B’,v [4]. The generalisation of Theorem 3 to the case of spherical non-polar (® = 0)
orbits in KN(a)dS spacetime is [2]:
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Theorem 4. The exact amount of frame dragging for a spherical non polar light orbit in the
KN(a)dS spacetime is:
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The parameters and variables of Lauricella’s function Fp which appears in the analytic solution of
Theorem 4 are defined in Eqs.(52)-(54) in [2]. Also H? := "ZTA [2 4 (P —a)*E?] +a*E2.

3. Closed form analytic computation for the deflection angle of an equatorial
unbound light ray in the Kerr-Newman spacetime

For equatorial geodesics the parameter 2 = 0 and the relevant differential equation for the
exact computation of the deflection angle is:
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We compute the following integral applying the partial fractions technique:
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Thus A9SLR =2 [ We organize all roots in ascending order of magnitude as follows,

where 0y, = 0t 1,00 = 0y 2,0 = 0y and o; = oy, ;,i=1,2,3 and we have that o, | > ot 2 >
oy, 3. By applying the transformation
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where a dimensionless variable r/ through r = Mgy has been introduced. The radii of the (di-

mensionless) event (r/,) and Cauchy (') horizons are given (In the usual units: ry = % +
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We computed analytically the radial integrals in terms of Appell-Lauricella hypergeometric func-
tions [2] :

Theorem 5. The deflection angle d.ky, of an equatorial unbound light ray in the gravitational field
of a Kerr-Newman black hole is computed in closed analytic form in terms of Appell-Lauricella
hypergeometric functions [2]:
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The roots of the quartic radial polynomial (3.2), that appear in the closed form solution of
Theorem 5, have been computed in a very elegant closed analytic compact form in terms of the
elliptic functions @, &/ as follows [2]:
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The rest of the quantities in J,xy are defined in [2].
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Corollary 6. The deflection angle for the non-spinning (a = A = 0) Reisser—Nordstrom black hole
is given by:

_ el (1/2)r(1) ! Togra 3 o)
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(
with k2 := gT_gY:—g.

Remark 7. The deflection angle for the uncharged (e = 0) rotating black hole (Kerr and Kerr-
(anti) de Sitter) has been investigated in [3].

SeKN,a =0.52

Figure 1: Plot of the deflection angle 8,k as a function of the parameters ®, e for fixed value for the Kerr
parameter (spin) a = 0.52.

Remark 8. From the 3-d plots of the deflection angle in Theorem 5, Figs.1-2, we observe that
the smaller the Kerr parameter the larger the deflection, for fixed values of the parameters @, e.
We also observe, the strong dependence of the deflection angle on the electric charge, for smaller
values of the spin of the black hole, particularly for small values of the impact factor parameter
D-see Fig.1. For a fixed small distance o there is a strong dependence of d.xn on the black hole’s
electric charge: the larger the electric charge e, the smaller 8,xy. For fixed values for a,e, the
deflection angle O,xy decreases with increasing values for the parameter ®. Concerning tentative
values for the electric charge of the SgrA*:

e =0.111/6.6743 x 1084.06 x 10° x 1.9884 x 10**esu = 2.29 x 10> esu < 7.65 x 10 C,

e =0.8516.6743 x 10-84.06 x 10° x 1.9884 x 103esu = 1.77 x 10°%esu < 5.94 x 10%°C
(3.17)
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Figure 2: Plot of the deflection angle J,xy as a function of the parameters ®, e for fixed Kerr parameter
a=0.9939.

we note that their likelihood is debatable: There is an expectation that the electric charge e trapped
in the galactic nucleous will not likely reach so high values as the ones close to the extremals
predicted in (1.6) that allow the avoidance of a naked singularity.

4. Exact analytic solution of the lens equations in the Kerr-Newman spacetime

The lens equations in this case are Eq.(1.7); and:

do  a(—e*+2Mr) N —a*® N ) de @
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Sin
We have written the lens Eqgs. (1.7); and (4.1) in the form [2]:
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AP (xs,ys,n) — REN (xi,1) — Ax(xi,y1,%5,y5,m) = 0. 4.4

In these equations n denotes the number of windings around the z-axis and m the number of turning
points in the polar motion.

Theorem 9. The analytic solution of the lens equations for the KN spacetime is given in terms of



Gravitational lensing by charged, rotating black holes G. V. Kraniotis

Weierstrafselliptic function and multivariable hypergeometric functions of Appell-Lauricella [2]
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y; is the possible position of the image and:
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Also )06, :=cos 0) cos 6,, 05 := sign Os 0 6,5 and € denotes a constant of integration. The Weier-
stral invariants in Eq. (4.7) are defined in (2.8) and (2.4). In establishing (4.7) we used the fact
that the sum of the second and third term on the right hand side of Eq.(4.5) can be written as:
fés’" +(1— o) |, 505, where (&,,,&p) are extremal values of &; thus, one can separate from it the
expression G [z, o< 057 (§).

a=0.9939,¢=0.11,0p = §

Figure 3: The boundary of the shadow of the KN black hole for a = 0.9939, e = 0.11 for an observer at
polar position 6p = /3.

Conclusion 10. The cosmological constant A does contribute to the gravitational bending and
Jframe dragging of light by a KN(A)dS BH. There is a significant dependance of relativistic observ-
ables such as the deflection angle, frame dragging and the periastron precession on the electric
charge of the black hole [2]. The shadow of the black hole (see Fig.3 and [2])depends significantly
on the electric charge-for fixed values for a,M the larger values for e the smaller the boundary
of the shadow of the black hole. Future measurements of the galactic centre black hole and its
relativistic observables may constrain significantly or detect the electric charge of the galactic
centre rotating black hole as well as the rest of the black hole parameters M ,a, A and will therefore
determine the type of the galactic centre black hole.
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