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1. Introduction

The recent results of BICEP2 [1] on the B-mode in the polarization of tsen@mmicrowave
background radiation (CMBR) at degree angular scales indicate thationthry scenarios may
have to face a new challenge. Namely, they should be able to accommodedeialplp values
of the tensor-to-scalar ratin since a B-mode could be due to the production of gravitational
waves during inflation. Although seems [2] to be smaller than initially claimed due to a possible
underestimation of the foreground from Galactic polarized-dust emisatres ofr ~ 0.01 cannot
be excluded [3, 4]. The most recent joint analysis [4] of the PlanclBd@&P2 data yields < 0.12
at 95% confidence level.

Supersymmetric (SUSY) hybrid inflation [5] — for a review see e.g. R¢E-[i8 undoubtedly
one of the most promising inflationary scenarios. In its simplest realizationgthat suffers from
some problems. The grand unified theory (GUT) gauge symmetry is spontandroken only at
the end of inflation and, thus, if magnetic monopoles are predicted by thikibgethey are copi-
ously produced [7] leading to a cosmological catastrophe. Also, althacgiirate measurements
[8] imply that the scalar spectral index is clearly lower than unity, this scenario gives [9] values
very close to unity or even larger than unity within minimal supergravity (SUGRA

These problems can be solved within a two stage variant of SUSY hybritionflaith min-
imal SUGRA, known as standard-smooth hybrid inflation scenario [10& cidismological scales
exit the horizon during the first stage of inflation, which is of the standwgbdiith type, along a triv-
ial classically flat path on which the gauge group is unbroken. Restrictingumber of e-foldings
during this stage, we can achieve adequately low valueg.offhe extra e-foldings needed for
solving the horizon and flatness problems of hot big bang cosmology asrajed by a second
stage of inflation along a classically non-flat valley of minima, where the ggrme is broken.
Consequently, magnetic monopoles are produced only at the end of theflatonary stage, but
are adequately diluted by the second stage. Note, in passing, that th¢ aleacostage inflation
has been used [11] in the past for solving the initial value problem ofithytuitation.

This scenario was realized within an extended SUSY Pati-Salam (PS) pattides GUT
model with only renormalizable interactions, which was constructed [12] fary different rea-
son. Namely, the simplest SUSY PS model predicts [13] exact Yukawa atiofic[14] and, with
universal boundary conditions, yields unacceptable values db-thwark mass. In the extended
model, Yukawa unification is naturally and moderately violated and this probleoived.

Here, we will show [15] that a reduced version of this extended SUSYnB&el based on
the left-right symmetric gauge gro@ r = SU(3)¢ x SU(2). x SU(2)r x U(1)g_. can also yield
a two stage inflationary scenario which can predict values op to about 5 together with
acceptable values ok. Larger values of would require unacceptably large runningref The
first stage occurs along the trivial path, stabilized by SUGRA, and asgent horizon undergoes
a limited number of e-foldings. The obtained values ofn be appreciable thanks to the presence
of strong radiative and relatively mild SUGRA corrections to the inflationatgmtial. The second
stage occurs on the so-called semi-shifted path [16], whiét¢s_ is unbroken, and generates the
extra e-foldings required. This is possible since the SUGRA correctiortseosemi-shifted path
also remain mild and this path, for the parameters chosen, is almost orthagahaltrivial one
and, thus, not affected by the strong radiative corrections on thel paih.
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After the termination of the first stage of inflatioBlU(2)r breaks spontaneously tolx(1)
subgroup. This leads to the production of magnetic monopoles. The spontabreaking of
a linear combination of thit) (1) andU (1)g_. at the end of the second inflationary stage leads
to the formation of open cosmic strings connecting these monopoles to antinlesiopad later
times, the monopoles enter the post-inflationary horizon and the string-mensysiem decays
into gravity waves well before recombination without affecting the CMBRe Tésulting gravity
waves, however, may be measurable in the future space-based lageronteter detectors.

2. The model in global SUSY

The reduced version of the extended SUSY PS model of Ref. [12] whékvill use here
is based on the left-right symmetric gauge gra@bjg = SU(3)c x SU(2). x SU(2)r x U (1)g_L,
which is a subgroup of the PS gauge group. The superfields whickelakant for inflation are a
conjugate pair of Higgs superfielthsandH in the (1,1,2); and(1,1,2)_; representations d.g,
respectively, causing the breaking®@fr to the standard model gauge groBgy, a gauge singlet
S and a pair of superfield®, @ in the (1,1, 3)o representation 0B g. The vacuum expectation
value (VEV) () of ® breaksGr to Gsm x U (1)g_L.

The superpotential relevant for inflation is

W = kS(M2 — ®?) — ySHH + md® — A dHH. (2.1)

The parametersl, m are superheavy masses, whilgy, A are dimensionless constants. All these
parameters but one can be made real and positive by rephasing thieddge For definiteness,
we choose the remaining complex parameter to be real and positive too.

The resulting F-term scalar potential is

VP = |K(M? — %) — yHH[? + |[m® — 2k SO|2 + [m® — AHH |+ [yS+ A D |2 (JH[> + [H[?) . (2.2)

FromV? and the vanishing of the D-terms, which implies thét = €H, one finds [16] two
distinct continua of SUSY vacua:

®=0,, H'=H, [H|= mj:* (6=0), ®=S=0, (2.3)
O, H —-H, \H]:w/%@‘ 6=1), ®=S—0, (2.4)
where
_ ym \2_ym
cDi_iM( 1+<2K)\M) jFZK/\M)‘ (2:5)

The model generally possesses [16] three flat direction3he usual trivial path at
P=O=H=H=0 with V°=V,=k’M? (2.6)
whereGyr is unbroken (ii) The new shifted path at

ym - y —  KY(M?2—®?) + Amd

CD:—m, CDZ—XS; HH = y2+)\2

2.7)
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with

A2 VNG
0__ — 24
VF =Vhsh= KM <y2+/\2> <1+ 4K2/\2|V|2) . (28)

This path supports new shifted hybrid inflation [17] wir broken toGg. (iii ) The semi-shifted
path, which exists only fok? > m?/2k?, at

m —  2k®d —
CDfiM\/l—W, G=""S H=H=0 (2.9)

. N3
with V2 = Vegp= nPM?2 <1—4K2M2). (2.10)

It yields semi-shifted hybrid inflation [16] witb) (1) unbroken.

We takeM? > rr12/2K2 and, thus, the semi-shifted path exists and, as one can show [16]salway
lies lower than the trivial and the new shifted one. We also takel, y < A < Kk, andm < M,
so that the new shifted path (f(B < 1) essentially coincides with the trivial one and, thus, plays
no independent role in our scheme.

3. The first stage of inflation

The first stage of inflation takes place along the trivial path, which, faelaalues of the
canonically normalized inflaton, is stabilized by the SUGRA corrections. Athdbhe number
of e-foldings is limited, all the cosmological scales exit the horizon during tfiistionary stage.
Strong radiative and relatively mild SUGRA corrections to the inflationaryrg@tthen guarantee
appreciable values oftogether with acceptable valuesraf

We adopt the Kahler potential

K=-In(1-[9%) —In(1—|®) + D>+ [H>+|H[> - 2In(~In|Z4[?) +|Z2|% (3.1)

The two extraG R singletsZ; andZ, included inK do not enter the superpotential. The resulting
F-term potential in SUGRA is found to be

Ve = | Y W + KWKy . —3W[ | €, (3.2)
|

where the sum is over all the fiel& o, q_n, H,H,Z,Z and a subscripX; denotes derivation
with respect taX;. The values oZ; andZ; are fixed [18] by anomalous D-terms. Note that the
superfieldsS, @, Z; have no-scale type Kahler potentials which, in view of the relation

Kz,[?K;7, = 2, (3.3)

guarantee the exact flatness of the potential along the trivial path [tl8}saapproximate flatness
on the semi-shifted one fat, = 0. The relation

Kz,[?K % - = 22 = B (3.4)

then implies — cf. Ref. [18] — that, faf, # 0, the complex inflatonS and® (approximately) for
the two paths, respectively, acquire masses squared proportighal to
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Using the symmetries, we can rotédeandH on the real axis. The field®, d_D, H remain
in general complex. For simplicity, we restrict them on the real axis too. THis@t influence
our results in any essential way since these fields are anyway real ia¢hem and on all the
flat directions. Also, we can show that, everywhere on the trivial andehd-shifted inflationary
paths, the mass-squared matrices of the imaginary parts of the fields do naftmikhe mass-
squared matrices of their real parts and, during both inflations, havevpasigenvalues in the
directions perpendicular to these paths. So there is no instability in the dire¢tiba imaginary
parts of the fields which are orthogonal to these inflationary paths. Mereas we can prove,
both the trivial and the semi-shifted inflationary paths are destabilized withdhis fileveloping
real values.

The canonically normalized real scalar fielwisg, (E, h, ﬁcorresponding to the Kéhler poten-
tial in EqQ. (3.1) are given by — cf. Ref. [18] —
s—tanhl, o= % G—tann?, m- F-1n

) bl ) 9 - = 35
vz T vz "t N &)
We evaluate the potentigk with the factor exg—2In(—In|Zy|?) +|Z5|?] absorbed into re-

defined parametess, y, m, andA and find

_ _ L -
Ve = |A2cosR-2 — AZsin? -2 | BAZ 4 A2 A2 4 = (W2 4 PP) AZ
F |: 1 \ﬁ 2 \@ B 3 4 A5 2( )A6
l _ _ —
+ 5 (@) AR (\/équS - 2hhA6) Ag] g2 (P 02+h) (3.6)
Here . )
_ 2 9\ Y P A
A=K <M > > 2hh A= m\@ 2hh (3.7)
O ® )
= Ay sinh—= cosh——= + A; cosh—— sinh——, 3.8
) o @
= A; sinh— sinh—— + A, cosh—— cosh——, 3.9
Ag=A 3 oinh—5+ A 7 7 (3.9)
As = mcosh-—- sinh-2- 0 — V2kpsinh-2- cosh-2-. (3.10)
V2 V2 V2 V2
and
@
As = smh— coer +A COSP sinh—— 3.11
voinh 0% V2 " (341
On the trivial path @, (E, h, h= 0), VF becomes
Ve = K2M* [1+ sinl‘?a} 3.12
F B 7 (3.12)

The mass-squared eigenvalues in the directions which are perpendactles trivial path, for
sintt(a/v/2) > M?2/2, are

mg, =~ ak?sintt L, 2 ~ k2M* {1+ (1+B)sini?-Z

o il (313
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and

o
/|
wherex1, = (h+ ﬁ)/ﬂ. Note that, in particular, the mass-squared formulas in Eq. (3.14) hold for
any value ofo. Thus, fory < kM?, the trivial path is stable for large values |af|. However, as

|o| decreases, the eigenvalues and eigenstates qfichy;system change. When sﬁﬂar/ﬁ) ~
M2/2+m?/2k2M2, one of these eigenvalues vanishes wittiominating the corresponding eigen-
state. As sinfi(g/v/2) — M2/2, the eigenvalues become opposite to each other @it con-
tributing equally to both the eigenstates. A further decrease of @nh/2) leads to the domina-
tion of the unstable eigenstate lpy Since@ must become nonzero to cancel the energy density
k2M* on the trivial path, we say that this path is destabilizedawith

me ., = (KM?Fy) |[KM?+ ((1+ B)KkM?F y) sint? (3.14)

XuX2 —

5 O M?2
sinkf —% = —

V2. 27

To Vk on the trivial path we add the dominant one-loop radiative correctioms fre N,-
dimensional supermultiple® (N, = 3):

(3.15)

(3.16)

2 o
" NpK 2tanﬁ\/§‘
' 82
Note that the renormalization scale in these radiative corrections is choserhatV,” vanishes
at|o| = |ocl.
The full inflationary potential/ and its derivatives with respect to(denoted by primes) are:

v g 5, 2tanit-Z
W:1+BS|nl’?\ﬁ+Z‘plnTﬁzC(a), (3.17)
v 1 O
v ﬂsmh(\@a) ([3+ sinf?(ﬁo)) : (3.18)
V// B 6([)
K2M4 - Cosr(\/éo-) <B - Slnhz(\/éo-)> ) (319)
v . B p 2V/28,
K2M4 v2sinh(v/20) (B sink?(ﬁo)) - tani?(v/20) sinh(v/20) (3.20)
with N2
Sy = L (3.21)
The usual slow-roll parameters for inflation are then
1/ V' \? 1 v 1
=3 () oy 7= () sy (3:22)
v/ v 1 43,7/E
§= < ) < ) = 2|tanh(v20)| NV + ? . (3.23
k2M4 ) \ k2M4 ) C2(0) ’ ank( G)‘ e C(o)tantf(v/20) ‘sinh(\/éa)) e
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From these expressions, we evaluadts runningds, the tensor-to-scalar ratrg andV:

Ns=1+2n—6¢c, as=16ns—24s>—28, r=16s, V = 3’272Asr, (3.24)

whereAs is the scalar power spectrum amplitude.

As a numerical example, tal@ = 1.45 at horizon exit of the pivot scalke = 0.05 Mpc™?,
K =17, 3 =0.022, andAs = 2.215x 10~° at the samé, [8]. We then findM = 3.493x 103,
C(o,) =2.2941, = 0.00188,n = —0.01389,ns = 0.9609,r = 0.0301, andas = —0.01674. So
we can not only be consistent with the latest Planck data [8], but alseorewodate large values
of r ~ few x 102, Note that large values ofrequire relatively large values &f which reducens
below unity, but not enough to make it compatible with the data. So large negalives of; are
needed, which requires that the parenthesis in the formul/fam Eq. (3.19) is dominated by the
second term. A similar parenthesis appears in the formuld'for Eq. (3.18) too, but with the two
terms added. So both these terms have to be appreciable with the secoredngnkadger, which
is possible only for large values &f, which controls the radiative corrections on the trivial path.
Inflation ends before the system reaclogdy violating the slow-roll conditions and the obtained
number of e-foldings is limited due to the large values aind the fact thatr, ~ 1.

4. The second stage of inflation

We choose, for the rest of the parametens= 1.827x 10°°, A = 0.1, andy = 10°%. Nu-
merically, including also the D-terms frotd andH, we find that there exist initial conditions
for which, after the first stage of inflation, the energy density appremecAM? and ¢? ~ 2M?2,

h, h~ 0, As ~ 0 with |o| < 1. So the system reaches the semi-shifted path and a second stage
of inflation can take place. It is worth noticing that the initial values of the fialdgh lead to

a double inflation scenario, although quite frequent, do not seem to felirdefined connected
regions. In other words, the coupled system of differential equatiximbiés a ‘chaotic’ behavior,
which means that a slight change of the initial conditions can possibly lead drdouble to a
single inflation scenario. A similar situation has been encountered [19]ietka simplest SUSY
hybrid inflation scenario, where a slight change of initial conditions mayintdiation.

The potentiaVr on the semi-shifted path, fé1? < B, is found to be

~ M2 i P
Ve ~ m’M [1+Bsmhzﬁ]. (4.1)

Notice the striking similarity of this expression with the expressionMoron the trivial path in
Eq. (3.12). So the SUGRA corrections remain relatively mild on the semi-sip#téitoo. From
As ~ 0, we find that the combination &and® which is the complex inflaton during the second

stage of inflation is B
MS+2k<P>D &
NV
since® contributes in this combinatiork /m ~ 650 times more thas.
The mass eigenstates for the- Hsystem during the second stage of inflation gie =

(h+h)/v/2 with masses squared

e

X1 X2 —

(4.2)

A FmM) [(A $(1+B)mM)sinl“F\%¢mM . (4.3)
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The eigenstate: develops an instability terminating the semi-shifted valley of minima with the
critical valuegq. of the real canonically normalized mflatambelng given by

. qoc mM
sintf = = —.
V2 A
During the second stage of inflation, we include the dominant radiativeaans to the
potential, which originate from this,-dimensional superfieldd, H (N, = 2) and read as

NAZY  Atant 2
h 2(Nh V2
VI~ mM <16n2>|n V2 (4.5)

(4.4)

The renormalization scale is chosen so ¥M&t= 0 at|@| = |@|. The radiative corrections from
@ are neglected since they are relatively very small. This is becdusauples to the complex
inflaton only throughS and the contribution o§ to this inflaton is severely suppressed. This is a
very important property of the model resulting from the fact that, for tharpaters chosen, the
semi-shifted path is almost orthogonal to the trivial one. So the very steafigtive corrections on
the trivial path, needed for accommodating appreciable valuesdaf not affect the second stage
of inflation. This is crucial since otherwise the semi-shifted path would betéapdo generate the
extra e-foldings required.

The number of e-foldings during the second stage of inflation betweeritih ¢ m and a final
@ value of the inflatorp is N(@) — N(¢@n), where

NG =L CosV20) + /1 (8/B)
26\/1=(8/B)  cost(v/2) — \/1— (&/B)

Wlth oh = NpA 2/4712 The termination of inflation is due to the radiative corrections and occurs at

9= (|@ > |@l) with
2
cost(v2) ~ *\E @.7)

Numerically, we find that, with the chosen values of the model parameters;atstdige gives
rise to about 13 e-foldings. So another 38-39 e-foldings (for retemaperaturel, = 10° GeV)
must be provided by the second stage of inflation, which requirej;(ﬂhm: 0.23 at the onset of
this stage. This can indeed be satisfied in our numerical example as wehoawe Isy extensive
numerical calculations. It is actually remarkable thﬁt which at the end of the first inflationary
stage is extremely small, manages to attain values of the order of fidWw?! at the onset of the
second stage.

To see this remarkable jump gfafter the end of the first inflationary stage, we depict, in Fig. 1,
the evolution of the fields andg as functions of the number of e-foldinlysstarting from the point
where the pivot scalk, = 0.05 Mpc ! exits the horizon for a particular choice of initial conditions.
Namely, we start withr = 1.45,p = 1073, 9= 108, h= 104, andh = 1.01x 10~4. All the fields
start with zero velocity except far the initial velocity of which is taken to be-1.1074x 107,
which is its actual velocity on the trivial path determined numerically. We olesniato remains
above its critical value for about 13 e-foldings. Just before the enldeofirst inflationary stage,
o oscillates four times around zero with appreciable amplitude. When this amplélsié&dlow

(4.6)
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1.6 ) | ) | ) | ) | ) | ) | ) | ) | ) | ) | ) |

Figure 1: The evolution ofo and¢ for the case witl = 0.0301 versus the numbBkof e-foldings after the

horizon exit of the pivot scalk., where we taker = 1.45, ¢ =103, =108 h=10"4 h=1.01x 104,
anddo /dt = —1.1074x 10°6.

the critical value ofo, @ moves to its value on the semi-shifted path zﬁxtarts oscillating slowly
with variable amplitudes of ordevl. The size of(ﬁ remains small for about.7 e-foldings before
starting its remarkable growth. This field acquires its largest val@®225 atN ~ 17.7, when
the second inflationary stage has already startedNFgr20, the evolution ofp follows Eq. (4.6)
closely.

Allowing for a stronger running ofis, we can achieve larger valuesrofFor example, taking
0, = 1.35,k = 1.75, andB = 0.037, we find thaM = 3.891x 103, C(0,) = 2.3479,¢ = 0.00314,
n = —0.00844 ns = 0.9643,0s = —0.03007, and = 0.0502. In addition, we choosa= 3.891x
107°,A = 0.1, andy = 107°. In this case, the pivot scale suffers about 10 e-foldings duringrste fi
inflationary stage and, consequently, approximately another 41-4@iagfe must be provided by
the second stage. This implies tmq;m must lie in the range 0.38-0.40, which is indeed feasible as
we verified numerically. In Fig. 2, we depict the evolutioncofandrﬁas functions of the number
of e-foldingsN again starting from the point where the pivot sdalexits the horizon, where we
make a particular choice of initial conditions shown in the caption of the figure.

Changing the values of the input parameters of the model, we can easilyeashiecessful
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Figure 2: The evolution ofo and @ for the case with = 0.0502 versus the numbé' of e-foldings after
the horizon exit of the pivot scale., where we taker = 1.35, 9 = 1073, ¢ =108 h=9x 104 h=
9.01x 10 %, anddo/dt = —1.8523x 10°6.

solutions with smaller values af Note that there is no particular fine-tuning of the parameters
required in our model.

5. Magnetic monopoles and cosmic strings

Soon after the end of the first inflationary stage, the system settles onntivslséied path
and SU(2)r breaks spontaneously tolX 1) subgroup by the nonzero value @ So magnetic
monopoles are formed. An order of magnitude estimate of the mean monopoiaopole dis-
tance can be obtained as follows. At production, this distanpg2gM)~! as determined by the
Higgs correlation length witlp ~ 1 being a geometric factor. In the matter dominated era between
the two inflationary stages, this distance is enhanced by a factgfM*/m?M?)1/3, wherek>M*
and n?M? are the classical potential energy densities on the trivial and the semidshiiths,
respectively. The second inflationary stage stretches this distancedgoyoa éxpg\, with N, be-
ing the corresponding number of e-foldings which is large but not huge Ref. [20]. During
the damped inflaton oscillations, this distance increases by another fa¢totM?2/c(T,) T4)Y/3,

10
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whereT; ~ 10° GeV is the reheat temperature aod@) = 7°g(T)/30 with g(T) being the ef-
fective number of massless degrees of freedom at cosmic tempefatdrethe subsequent ra-
diation dominated period, the monopole-antimonopole distance is multiplied by ariather
~T/T ~ (4c(T)/3)Y/*T;\/, wheret is the cosmic time. So this distance, in the radiation domi-
nated period, becomes

i

4\ 4 1 1 1N, K?M* § 1
~ <3) c(Ty)"3¢(T)2p(2kM) LN < T2 ) Tit2. (5.1)

Equating this distance with the post-inflationary particle horizazi, we find the timey at which
the monopoles enter this horizon:

2 5
e e felote (1) (5.2
with Ty being the cosmic temperature at titpe

After the end of the second inflationary stage, the system settles in the Satsivina and a
linear combination of th&) (1)g_. gauge symmetry and the unbroKeiil) subgroup ofSU(2)r
breaks spontaneously leading to the production of local cosmic stringeseTstrings, if they
survived after recombination, could have a small contribution to the CMB#®epspectrum which
is parametrized [21] by the dimensionless string ten§pig, whereG is Newton’s constant and
Us is the string tension, i.e. the energy per unit length of the string. For logadistin the Abelian
Higgs model in the Bogomol’'nyi limit, the string tension is [21]

Hs = 41| (H) |2, (5.3)

where(H) is the VEV ofH. Although the strings in our model are more complicated, we think
that the above estimate is good enough for our purposes here.

It is important that the strings, in our case, do not survive after recatibm but decay well
before it. So they do not affect the CMBR. The reason is that they aa sfrings connecting
monopoles to antimonopoles. This can be understood by simply realizing thiatelking of
SU(2)r x U(1)g_ toU(1)y by (H) and(H) is similar to the breaking of the electroweak gauge
group and, thus, cannot lead to any topologically stable monopoles orsstriiog a more detailed
explanation of this fact, see Ref. [22]. This breaking can only lead tattmedtion of topologically
unstable dumbbell configurations [23] consisting of an open string cbingea monopole to an
antimonopole.

At any time after their formation, the strings look like random walks with a stepebtider
of the particle horizon connecting monopoles to antimonopoles [24] — toidedtre evolution
of this string network, we will follow closely this reference. As argued irf. R&4], at all times
before the entrance of monopoles into the horizon, there is of the oraereddtring segment per
horizon and, thus, the ratio of the energy dengit) of the string network to the total energy
density poi(t) of the universe remains practically constant. tAf there is approximately one
monopole-antimonopole pair per horizon connected by an almost straigig ségment of the
size of the horizon. The energy densii(ty) of the strings aty is then~ 3Gps/2t3. After this
time, more and more string segments enter the horizon, but the length of egpobréeemains

11
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constant. So the system of string segments behaves like pressureless Amtietonsequence,
ps(t) ~ 3Gus/2(tyt3)Y/2 and the ‘relative string energy density’

pe(t) (t)ﬁ
o0 2GLs » (5.4)

(py(1) is the ‘photon’ energy density) increases with time — note that in a radiation @éeain
universepy(t) = prot(t). The strings decay at cosmic time [25]

ta ~ (T Gs) 2ty (5.5)

with I ~ 50 by emitting gravity waves with energy densfiyy(tq) at production given by

NI

Poulla) (2?2

Note that this is also the maximal relative string energy density.

Taking the lower value of the number of e-foldings ame- 2, Eq. (5.2) gives, for the two
numerical examples presentdd,~ 4.8 x 10~/ sec and 14 x 10~* sec, respectively. Conse-
guently, the strings enter the horizon well before big bang nucleosysth€keir decay time is
ty~ 6x 1072 sec and 5 sec, in the two cases, as one can infer from the corresponding dimensio
less string tensions

Gls = ~319x 107 and 757x10°'. (5.7)
So the strings decay well before recombination and, thus, do not #ie@MBR. Their maximal
relative energy density is' 2.3 x 10~4 and 35 x 10~ for our two examples and, thus, the strings
remain always subdominant. In particular, they do not disturb nucleassisth

Had the strings survived until now, an upper bound would have to be edpwsGLs to keep
their contribution to the CMBR power spectrum at an acceptable level. Féitbkan-Higgs field
theory model, this bound is [26]

Gus <3.2x10°". (5.8)

In our first numerical exampl&Lis almost saturates this bound, but violates the recent bound [27]
Gus <33x10°8 (5.9)

from pulsar timing arrays, which also holds for strings surviving until tresent time. Our second
numerical example violates both the bounds in Egs. (5.8) and (5.9). Totlspbr examples are
only possible because the strings decay sufficiently early to gravity waves

The ratio of the energy density of the gravity waves produced by the sttoghat of the
photons at the present tinhgecan be found from Eq. (5.6) to be — cf. Ref. [28] —

Pgu(to) 2\ 2 39 \3
e ~2(7) " (107) o0

NI
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and their present abundance is given by

Pgw(to) py(to)
Qqul(t0) ~ ( oy(t0) ) (p:(to)> "o (5-11)

wherepc(tp) is the present critical energy density of the universeland 0.7 is the present value
of the Hubble parameter in units of km sédvipc 2. As it turns outQgwh?(to) ~ 2.2 x 10~° and
3.4 x 1072 for our two numerical examples, respectively. The frequelity) of these gravitational
waves at production must betg1 since the length of the decaying strings~i2ty [25]. The
present value of this frequency is then
5
<tq) | (5.12)
to

1
t 2

whereteq is the equidensity time at which matter starts dominating the universe. For the two
numerical examples, this frequency turns out tedde1 x 10-* Hz and 47 x 106 Hz, respectively.

We see that these frequencies are too high to yield any restriction fromRCddBsiderations [28].
Also, they are well above the range probed by the pulsar timing arraywattems [29] and, thus,

the recent bound [27] from pulsars does not apply to our case. Wowie frequency of the
gravity waves in our first numerical example lies marginally within the range forteed by the
future space-based laser interferometer gravitational-wave obsgegatoch as eLISA/NGO [30].

We conclude that the monopole-string system decays early enough witlasing any trouble,

but the gravity waves that it generates may be probed by future spaeettaser interferometer
observations.

6. Conclusions

We considered a reduced version of the extended SUSY PS model .oflRgfwhich was
initially constructed for solving thé-quark-mass problem of the simplest SUSY PS model with
universal boundary conditions. We find that this model can yield a tweedtggrid inflationary
scenario predicting values of the tensor-to-scalar ratio of the ordemof L0-2. For the values of
the parameters chosen, the model in global SUSY possesses practicathassically flat direc-
tions: the trivial and the semi-shifted one. We have shown that the SUGR@&ctions stabilize the
trivial path, which can then support a first stage of inflation with a limited nurobe-foldings.
The obtained value of tensor-to-scalar ratio can be appreciable aslaaemild SUGRA cor-
rections combined with strong radiative corrections to the inflationary potewtidle the scalar
spectral index remains acceptable.

The extra e-foldings required for solving the horizon and flathesdgmubof the standard hot
big bang cosmological model are generated by a second stage of infletgnthe semi-shifted
path, where the gauge groul{1)g_ is unbroken. This is possible since the SURGA corrections
to the potential on the semi-shifted path remain mild and this path is almost orthagdmatrivial
one and, thus, is not affected by the strong radiative corrections tatkatfal on the trivial path.

After the termination of the first inflationary stage, magnetic monopoles aneefhr Sub-
sequently, at the end of the second stage of inflation, cosmic strings @itaced connecting
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these monopoles to antimonopoles. At later times, the monopoles enter the laoriztire string-
monopole system decays into gravity waves well before recombination wideing any trace
in the CMBR. The resulting gravity waves, however, may be measurable fottire.

The baryon asymmetry of the universe can, in principle, be generatedrbthermal leptoge-
nesis [31]. At reheating, the inflaton system decays into right-handedime superfields, which
subsequently decay out of equilibrium into light matter generating a primdepsdn asymme-
try. This asymmetry is then partly turned into the observed baryon asymmeitng ohiverse by
electroweak sphaleron effects. A detailed discussion of this mechanisin &itfarticle physics
model based on the same left-right symmetric gauge group as our presaeit iImat with some
differences, can be found in Ref. [32].
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