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1. Introduction

F-Theory [1] is a 12 Dimensional formulation of Type IIB string theory, with the internal
dimensions classified as a complex Calabi-Yau four-fold elliptically fibred over a threefold base.
There is a well studied correspondence between the singularities of elliptically fibred space and
the gauge groups to which they relate. This is an intriguing feature for theorists, since it facilitates
popular GUT groups [4, 5, 6, 7, 8, 9, 10] such as SU(5), SO(10) or E6, with a maximum symmetry
enhancement of the exceptional group E8.

Elliptic fibration can be described mathematically in terms of the Weierstrass equation:

y2 = x3 + f (z)x+g(z) (1.1)

where x, y and z are complex coordinates and f and g are eighth and twelfth degree polynomials
respectively. The form of this equation and its discriminant, ∆ = 4 f 3 +27g2, determine the type of
singularities present in the geometry. As already mentioned, due to the work of Kodaira, we have a
full classification of the gauge groups supported by the singularities of a particular space. By per-
forming a process known as Tate’s algorithm, which entails enforcing vanishing of the discriminant
to various orders in z, we may re-cast the Weierstrass equation in the so called Tate form:

y2 +α1xy+α3y = x3 +α2x2 +α4x+α6 . (1.2)

The αn coefficients in this equation and their vanishing order determine the singularity of the sur-
face. For example, an SU(5) singularity would correspond to[19, 20, 21]:

α1 =−b5, α2 = b4z, α3 =−b3z2, α4 = b2z3, α6 = b0z5 . (1.3)

Table 1 outlines the conditions required for some of the more interesting groups to be realised in
the geometry.

In the semi-local approach to F-theory [17] we may put aside the challenging issue of com-
pactifying the space and focus on a local patch: a D7-brane within the manifold that exhibits the
GUT symmetry of choice. Exploiting the properties of elliptic fibrations, we shall also assume
that there is a point of E8 enhancement in the geometry and that all interactions descend from this
maximal enhancement, which is broken by an appropriate Higgsing. This will be used to study a
particular SU(5) scenario in the subsequent narrative.

The assumption of an SU(5) GUT group requires that the matter representations, which come
from the adjoint of E8, are a bi-fundamental representation with charges under the commutant with
E8, which is a perpendicular SU(5):

E8→SU(5)GUT ×SU(5)⊥ (1.4)

248→(24,1)+(1,24)+(10,5)+(1̄0, 5̄)+(5̄,10)+(5, 1̄0) (1.5)

This breaking informs us that under the GUT group we should have five antisymmetric representa-
tions, ten fundamental, and twenty four singlets. These are described in terms of the weights of the
perpendicular group as :

Σ10 : ti = 0,

Σ5̄ : ti + t j = 0, i 6= j

Σ1 : ±(ti− t j) = 0, i 6= j

2
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Group α1 α2 α3 α4 α6 ∆

SU(2n) 0 1 n n 2n 2n
SU(2n+1) 0 1 n n+1 2n+1 2n+1

SO(10) 1 1 2 3 5 7
E6 1 2 3 3 5 8
E7 1 2 3 3 5 9
E8 1 2 3 4 5 10

Table 1: The vanishing orders of each of the coefficients of Equation (1.2) in terms of the coordinate z for
various various interesting gauge groups to be realised in an elliptically fibred space. The gauge groups are
supported by specific types of singular fibre, as classified by Kodaira.

In general these weights are not independent, but related by monodromy actions on the roots as we
shall later discuss.

The Tate form of the Weierstrass equation will correspond to an SU(5) singularity if the con-
ditions of Equation (1.3) are enforced. This gives a relatively complicated polynomial in the coor-
dinates of the space:

y2 = x3 +b0z5 +b2xz3 +b3yz2 +b4x2z+b5xy . (1.6)

However, using homogenous coordinates, z→U , x→V 2, and y→V 3 along with an affine param-
eter s =U/V can be written as a so-called spectral cover, which is simply a fifth order polynomial
in s, the roots of which are identified as the roots of SU(5)⊥, ti:

0 = b5 +b4s+b3s2 +b2s3 +b1s4 +b0s5
∝

5

∏
i=1

(s+ ti) . (1.7)

This equation accounts for the antisymmetric representation of the GUT group, while an equation
to characterise the fundamental representation should be a tenth order polynomial with roots ti + t j

as state above. By consistency with Equation (1.7), this can be written in terms of the coefficients
of the equation for the antisymmetric representation. The defining equation is the zeroth order part
of that polynomial, which can be shown to be:

P5 = b2
3b4−b2b3b5 +b0b2

5 ∝ ∏
i> j

(ti + t j) (1.8)

These two equations are sufficient to describe the matter content of an SU(5) GUT model in F-
theory, however the exact matter content is influenced by monodromy actions on the roots, which
we shall discuss in Section 2.

2. Monodromy

The perpendicular group left over after isolating the GUT group within the parent E8 theory
will cause various points of symmetry enhancement on the GUT surface. For example, in the SU(5)
case we shall consider, the model essentially has four U(1)s intersecting the SU(5) GUT surface
at various points,

E8→ SU(5)GUT ×SU(5)⊥→ SU(5)GUT ×U(1)4 . (2.1)

3
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âĂć However, the charges associated to these enhancements must cancel out in the low energy
theory, such as for Yukawa couplings.

We shall focus on Yukawa couplings, which are formed in the usual way for an SU(5) GUT
theory, with the additional constraint that the 10s have charges ti and the 5s (5̄s) have charge−ti−t j

(ti + t j). Correspondingly, the Top quark and the Bottom/Tau Yukawa couplings are of the form:

Top type Yukawas: 10ti ·10t j ·5−tk−tl

With: k 6= l

Bottom/Tau type Yukawas: 10ti · 5̄t j+tk · 5̄tl+tm

With: j 6= k and l 6= m

In order for the Top quark to have a tree-level, renormalisable coupling, the diagonal term in the
matrix (10ti · 10ti · 5−t j−tk with j 6= k) must be have no residual charge under the perpendicular
charge. Clearly there is no way to achieve this as j 6= k for the 5 carrying the Higgs. As a con-
sequence we seem to be unable to write down any terms to give a renormalisable Top, which is a
phenomenologically undesirable feature.

However, in general not all the roots are independent and there will be some monodromy ac-
tion(s) relating two or more roots. An enlightening yet simple example (following the presentation
in [15]) is the minimal monodromy action, which is Z2. Suppose that two of the roots of the spectral
cover found in Equation (1.7) cannot be factorised within the same field as the original coefficients
of the equation1, i.e.

b5 +b4s+b3s2 +b2s3 +b1s4 +b0s5 = (a1 +a2s+a3s2)(a4 +a5s)(a6 +a7s)(a8 +a9s) . (2.2)

The quadratic part of this equation has two roots,

r1 =
−a2 +

√
a2

2−4a1a3

2a3
, r2 =

−a2−
√

a2
2−4a1a3

2a3
(2.3)

which are identical up to the sign in front of the discriminant. Let w = a2
2−4a1a3, then it we may

also write without loss of generality w = eiθ |w|, which is invariant under θ → θ + 2π . However,
since we deal with

√
w= eiθ/2

√
|w|, the roots r1,2 are not invariant, but instead interchange r1↔ r2,

implying that the D7-branes associated to those roots are interchangeable under this action. In terms
of the Top quark coupling, the consequence is that the charge of the 5 carrying the Up-type Higgs
may have charge (−t j− tk)→−2t j, while the Top quark coupling becomes:

10ti ·10ti ·5−ti−t j → 10ti ·10ti ·5−2ti , (2.4)

which is trivially invariant under the perpendicular U(1)s allowing a renormalisable Top Yukawa.
This example is the simplest and minimal monodromy choice available, however there are a

large number of monodromy options. Since we do not have any knowledge of the global geometry,
we must select any monodromy groups for our model by hand. In the case of an SU(5) theory, the
monodromy group can range from the simple Z2 case already discussed to the Weyl group of the

1Note that due to tracelessness of SU(5), b1 = 0
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bi a j coefficients for 4+1
b0 a5a7

b1 a5a6 +a4a7

b2 a4a6 +a3a7

b3 a3a6 +a2a7

b4 a2a6 +a1a7

b5 a1a6

Table 2: Summary of the relationships between the coefficients of C5 and C4×C1

five weights, S5. The latter is one of the many non-Abelian monodromy groups, which until recent
years [32] have been largely ignored as it is unclear how these may be realised in the geometry.

In this work we discuss the case of A4 as a monodromy group, which is the group of all even
permutations of four elements, which are the symmetries of a tetrahedron. While in the Abelian
cases of ZN monodromies we consider the roots to be directly identified, for this non-Abelian case
we treat the weights as representations of the monodromy group as the group structure is more
rich. This is conjectured to be generated by some non-Abelian, internal flux that is not yet fully
understood.

3. An F-SU(5) Model with A4 Monodromy

Let us now examine a model based on SU(5) with an A4 monodromy action upon four of the
weights of the perpendicular group. In order to have this choice realised, the spectral cover must
factorise into a quartic part and a linear part.

C4×C1 :
(
a1 +a2s+a3s2 +a4s3 +a5s4)× (a6 +a7s) = 0

These coefficients must be consistent with the original bk coefficients of Equation (1.7), as shown
in Table 2, while also being in the same field - avoiding branch-cuts.

These coefficients can in general be any monodromy action on four weights, the most general
of which would be S4. The exact group can be constrained via Galois theory, which deals with
transitive groups and polynomials. However, in this instance we shall simply take the monodromy
to be A4 and proceed to examine the consequences.

The defining equation for the antisymmetric representation of the GUT group (the 10s) is for
the s0 term of Equation (1.7), while the defining equation for the fundamental representation (the
5/5̄s) is Equation (1.8). Inputting the relevant ai coefficients, we find that the polynomials for the
10s and 5/5̄s respectively are:

P10 = a1a6 (3.1)

P5 = (a2
2a7 +a2a3a6∓a0a1a2

6)(a3a2
6 +(a2a6 +a1a7)a7) . (3.2)

We have also exploited the property of SU(5) tracelessness, solving b1 = a4a7 + a5a6 = 0 with
a4 = ±a0a6 and a5 = ∓a7. These equations cannot be further factorised within the same field
without creating branch-cuts. As such, each factor is interpreted as defining the properties of a D7-
brane intersecting the GUT surface, which we call a Matter Curve. The homologies of the original

5



P
o
S
(
P
L
A
N
C
K
 
2
0
1
5
)
0
8
3

F-Theory Model Building with Discrete Symmetry Andrew K. Meadowcroft

Curve Equation Homology N M
10a a1 η−5c1−χ −N M10a

10b a6 χ +N M10b

5c a2
2a7 +a2a3a6∓a0a1a2

6 2η−7c1−χ −N M5c

5d a3a2
6 +(a2a6 +a1a7)a7 η−3c1 +χ +N M5d

Table 3: Table of matter curves, their homologies, charges and multiplicities.

bk are well defined in terms of the Chern classes of the tangent bundle (c1) and the normal bundle
(t):

[bk] =η− kc1

η =6c1− t .

We can use this to determine the homologies of the ai coefficients up to some unknown homology
of one of the coefficients, usually taken to be [a6] = χ . The homologies of the Matter Curves are
presented in Table 3.

Examining Table 3, we can see that we have a limited spectrum for model building: two 10s
and two 5s. This seems insufficient to construct any realistic model, however we may exploit a
property of A4 to improve the situation. Since we are dealing with a monodromy action on four
weights we have a quadruplet under the group action, which is a reducible representation of A4.
Using a unitary transformation the weights, ti=1,...,4 can be rotated into a basis which transforms as
a singlet (ts) and a triplet ({ta, tb, tc}).

t1
t2
t3
t4

→


t1 + t2 + t3 + t4
t1 + t2− t3− t4
t1− t2 + t3− t4
t1− t2− t3 + t4

=


ts
ta
tb
tc

 (3.3)

This can be applied to the 10s, bifurcating one of the preexisting matter curves and giving us a total
of three 10s. A similar process can be applied to the 5/5̄s, increasing the number of matter curves
to four. The price we pay for this improvement is that we do not have knowledge of the homologies
of the new matter curves, though they must respect the same flux restrictions over all.

The initially massless states on the Matter curves are complete vector multiplets, which must
become chiral in the low energy spectrum. This can be achieved by switching on fluxes in the
internal geometry, splitting the doublets and triplets. We impose hypercharge flux as follows:

FY ·χ = N

FY · c1 = FY ·η = 0

This flux naturally allows us to split the GUT representations to those of the Standard Model,
leaving only the multiplicities of the matter on each matter curve to the model builders choice. The
5/5̄s split as:

n(3,1)−1/3−n(3̄,1)+1/3 = M5 ,

n(1,2)+1/2−n(1,2)−1/2 = M5 +N ,
(3.4)

6
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Curve SU(5)×A4×U(1)⊥ NY M Matter content R
101 (10,3)0 0 MT 1 3 [MT 1QL +uc

L(MT 1−NY )+ ec
L(MT 1 +NY )] 1

102 (10,1)0 −N MT 2 MT 2QL +uc
L(MT 2−NY )+ ec

L(MT 2 +NY ) 1
103 (10,1)t5 +N MT 3 MT 3QL +uc

L(MT 3−NY )+ ec
L(MT 3 +NY ) 1

51 (5,3)0 0 MF1 3
[
MF1d̄c

L +(MF1 +NY )L̄
]

1

52 (5,3)0 −N MF2 3
[
MF2

¯̄D+(MF2 +NY )H̄d)
]

0

53 (5,3)t5 +N MF3 3 [MF3D+(MF3 +NY )Hu] 0
54 (5,1)t5 0 MF4 MF4d̄c

L +(MF4 +NY )L̄ 1

Table 4: Table showing the possible matter content for an SU(5)GUT×A4×U(1)⊥, where it is assumed the
reducible representation of the monodromy group may split the matter curves. The curves are also assumed
to have an R-symmetry

while the 10s split into three representations:

n(3,2)+1/6−n(3̄,2)−1/6 = M10 ,

n(3̄,1)−2/3−n(3,1)+2/3 = M10−N ,

n(1,1)+1−n(1,1)−1 = M10 +N .

(3.5)

Note that anomaly cancellation requires ∑M5 +∑M10 = 0. Table 4 shows a prospective matter
spectrum for this time of model, with A4 irreducible representations and doublet-triplet splitting
parameters included.

The model presented in [2] is shown in Table 5, which corresponds to a model where N = 0
and the multiplicities are chosen to be:

M101 =M54 = 0,

M102 =M53 =−M52 =−M51 = 1,

M103 =2,

which will generate a spectrum with the correct numbers of quarks and charged leptons. The
Leptons in particular will be found in a triplet of A4, which will give the neutrino sector a richer
structure. The full discussion of this model can be found in [2], so here we shall merely highlight
the neutrino sector for attention.

3.1 Neutrino Sector

The Neutrinos are unique in the SM in that they are the only particles that may be Majorana -
that is, the neutrino could be its own anti-particle. This opens up the possibility of explaining their
comparatively tiny mass via some form of so-called ‘Seesaw’ mechanism, whereby the effective
mass of the neutrino is given by the Weinberg operator,

Me f f = MDM−1
R MT

D. (3.6)

The Dirac matrix (MD) and the Majoranna mass matrix for the right-handed neutrinos (MR) are
calculated by considering the couplings in Table 6.

7
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Curve Rep’n R-sym Matter content
101 (10,3)0 1 -

102 = T3 (10,1)0 1 QL +uc
L + ec

L
103 = T (10,1)t5 1 2QL +2uc

L +2ec
L

5̄1 = F (5̄,3)0 1 3L+3dc
L

5̄2 = Hd (5̄,3)0 0 3D̄+3Hd

53 = Hu (5,3)t5 0 3D+3Hu

54 (5,1)t5 1 -
θa (1,3)−t5 0 Higgs Flavons
θb (1,1)−t5 0 Flavon
θc (1,3)0 1 νR

θd (1,3)0 0 Flavons

Table 5: Table of Matter content in N = 0 model

Full coupling
Dirac-type mass θc ·F ·Hu ·θa

θc ·F ·Hu ·θa · (θd)
n

θc ·F ·Hu ·θb

θc ·F ·Hu ·θb · (θd)
n

Right-handed neutrinos Mθc ·θc

(θd)
n ·θc ·θc

Table 6: Operators allowed in the neutrino sector, assuming the matter content of Table 5. θc is selected as
the righthanded neutrino, while the charged lepton doublet is found in F .

Parameter Central value Min→Max
θ12/

◦ 33.57 32.82→34.34
θ23/

◦ 41.9 41.5→42.4
θ13/

◦ 8.73 8.37→9.08
∆m2

21/10−5eV 7.45 7.29→ 7.64
∆m2

31/10−3eV 2.417 2.403→ 2.431

R =
∆m2

31
∆m2

21
32.0 31.1→ 33.0

Table 7: Summary of neutrino parameters, using best fit values as found at nu-fit.org

In order to calculate the contributions of these operators we must assign vacuum alignments
to the relevant singlets, as well as the Higgs. We assume that the flavons θa and θb, arising from
the singlet sector, get alignments:

〈θa〉= (a,0,0)T and〈θb〉= b (3.7)

where we have taken the basis where the group element S is diagonal. The Up-type Higgs is chosen
in a likewise fashion to be:

〈Hu〉= (v,0,0)T . (3.8)

The first four operators correspond to Dirac mass terms, coupling left and right-handed neutrinos.

8
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Figure 1: Plots of lines with the best fit value of R = 32 in the parameter space of (Y1,Y2). Left: The full
range of the space examined. Right: A close plot of a small portion of the parameter space taken from the
full plot. The curves have (Y3,Z1,Z2) values set as follows: A = (1.08,0.05,0.02), B = (1.08,0.0,0.08),
C = (1.07,0.002,0.77), and D = (1.06,0.01,0.065).

In the chosen basis, the triplets of A4 the triplet product: 3a×3b = 1+1′+1′′+31 +32, where:

1 = a1b2 +a2b2 +a3b3

1′ = a1b2 +ωa2b2 +ω
2a3b3

1′′ = a1b2 +ω
2a2b2 +ωa3b3

31 = (a2b3, a3b1, a1b2)
T

32 = (a3b2, a1b3, a2b1)
T

Assuming the following alignments 3a = (a1, a2, a3)
T and 3b = (b1, b2, b3)

T. The first of these
operators will fill out the main diagonal, while the rest of the matrix will be filled out by the
remaining operators, giving a Dirac mass matrix (at lowest order) of:

MD =

 y0va z3vd2b z2vd3b
z1vd2b y1va y9bv
z4vd3b y8bv y1va

 (3.9)

where yi>0 are Yukawa couplings, with y0 = y1 + y2 + y3, and zi are higher order couplings. Simi-
larly, we may calculate the Majorana mass matrix, which has two contributions that will dominate.

MR = M

 1 0 0
0 1 0
0 0 1

+ y

 0 d3 d2

d3 0 d1

d2 d1 0

 (3.10)

Between these two matrices we have a neutrino sector that is quite complicated and it will be a
challenge to make any predictions due to the large number of parameters. However, we shall make
some simplifications to attempt to extract some results. Let us start by setting z1 = z3 and z2=z4,
which significantly narrows the parameter space. We may then reduce the number of parameters

9
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Figure 2: The figures show plots of two large neutrino mixing angles at their current best fit values. Left:
Plot of sin2(θ12) = 0.306, Right: Plot of sin2(θ23) = 0.446. The curves have (Y3,Z1,Z2) values set as
follows: A = (1.08,0.05,0.02), B = (1.08,0.0,0.08), C = (1.07,0.002,0.77), and D = (1.06,0.01,0.065).

greatly by defining some dimensionless variables to compute with:

Y1 =
y1
y0
≤ 1 Y2,3 =

y8,9b
y0a

Z1 =
z1d2b
y0a Z2 =

z2d3b
y0a

(3.11)

If we then compute our effective mass matrix, we find that we have five variables and one mass
scale, m0 =

y2
0v2a2

M :

Me f f

m0
=

 1+Z2
1 +Z2

2 Y1Z1 +Y3Z2 +Z1 Y2Z1 +Y1Z2 +Z2

Y1Z1 +Y3Z2 +Z1 Y 2
1 +Y 2

3 +Z2
1 Y1(Y2 +Y3)+Z1Z2

Y2Z1 +Y1Z2 +Z2 Y1(Y2 +Y3)+Z1Z2 Y 2
1 +Y 2

2 +Z2
2

 . (3.12)

This matrix cannot easily be manipulated by hand to solve for known neutrino parameters,
presented in Table 7. Instead the matrix has been computationally diagonalised, with the resulting
outputs being fitted to the data. The focus was placed on matching the mass squared ratio,

R =

∣∣∣∣m2
3−m2

2

m2
2−m2

1

∣∣∣∣ , (3.13)

which at the time of this work had a best fit value of 32, as shown in Table 7. Having made our fit as
close to this value as possible, we also required that the model give phenomenologically acceptable
values of the neutrino mixing angles. While this does not allow prediction of the neutrino mixing
angles, it does allow us to read off an absolute mass scale for each of the neutrinos, with the sum
of the masses also being known absolutely.

Figure 1 shows a plot of lines in the (Y1,Y2) plane for the central value of R = 32. It demon-
strates that there are large portions of the parameter space that are able to fulfill this starting re-
quirement. Meanwhile Figure 2 plots sin2(θ12) and sin2(θ23) best fit values in the same plane.
Again, the model has regions available that satisfy these constraints from the data.

As a final test of the model, a set of benchmark points has been identified, shown in Table
8, which will give values of all inputs from data within best fit values. The table also shows that

10
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Inputs
Y1 0.08 0.09 0.09 0.10
Y2 1.09 1.10 1.10 1.11
Y3 1.07 1.08 1.08 1.09
Z1 0.01 0.01 0.00 0.01
Z2 0.07 0.08 0.08 0.08
m0 54.0meV 51.6meV 50.3meV 47.8meV

Outputs
θ12 33.5 33.2 33.1 32.8
θ13 8.70 8.82 9.05 9.05
θ23 41.9 41.7 41.7 41.5
m1 53.4meV 51.1meV 49.8meV 47.3meV
m2 54.1meV 51.8meV 50.5meV 48.1meV
m3 73.2meV 71.5meV 70.8meV 69.1meV

Table 8: Table of Benchmark values in the Parameter space, where all experimental constraints are satisfied
within errors. These point are samples of the space of all possible points, where we assume θ23 is in the first
octant. All inputs are given to two decimal places, while the outputs are given to 3s.f.

typically the neutrino mass scale is confined to be in a region close to 50meV, with the sum of
the neutrino masses being less than 200meV, placing them within cosmological limits on the total
neutrino mass contribution.

It is worth noting that this model disfavours a second octant θ23, with no numerical solutions
being found that satisfied all the constraints. As such, if θ23 were discovered to be in the second
octant, this model would be entirely ruled out.

4. Conclusions and Outlook

In this work we examined the implications of using non-Abelian monodromy actions in F-
theory GUTs. Specifically we considered an SU(5) model with an A4 monodromy acting on its
roots, which was motivated by an interest in the neutrino sector. In the framework of the spectral
cover formalism we were able to discuss the consequences of considering the action on the roots to
be a reducible representation of the monodromy group, allowing for non-trivial mass textures to be
examined for the neutrino sector. A numerical approach was used to fit the model to results coming
from experiment, yielding a model which was able to be compatible with all constraints from
experiment.The work presented predicted neutrino masses that were compatible with cosmology,
giving a scale for the neutrino mass in the region of 50meV.

Since presenting this work further research has been done to understand these types of model,
with a recent paper on the implications of a D4 model with a geometrically inspired R-parity being
examined [3]. In this work we have shown that such models often exhibit distinct types of R-
parity violation, with signatures visible in neutron-antineutron oscillations but freedom from proton
decay. This geometric R-parity provides a much needed motivation for R-parity, while also giving
strong predictions to many models. As such it will be the focus of up-coming works.
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To summarise, F-theory provides an excellent playground for motivating discrete symmetries,
with promising features for GUT models and flavour physics, as well as other BSM physics. Using
the tools developing in this field it may be possible to address many current problems in physics,
while making interesting predictions that will be testable at future detectors.
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