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sheet operator representing a massless stringy particle interacting with the black hole necessarily
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Stringy Black Holes Retain Information

1. Introduction

The black-hole information problem requires no introduction. Decades ago, Bekenstein [1]

and Hawking [2] discovered that four-dimensional black holes have thermodynamical properties

such as temperature and non-zero entropy corresponding to a mixed quantum-mechanical state.

Hawking, in particular, then argued [3] that information would be lost across the black-hole hori-

zon, giving rise to a transition from a pure to a mixed state.

The advent of string theory, and in particular Witten’s construction [4] of a two-dimensional

black hole solution using an SU(1,1)/U(1) coset structure [5, 6], coupled with dualities [7] and fol-

lowed by the construction of four-dimensional stringy black holes using D-branes [8, 9], provided

opportunities to probe the black-hole information problem in an explicit theoretical laboratory.

We have argued [10] that two-dimensional black holes carry an infinite set of ‘hairy’ W quantum

numbers that preserve in principle the lost information, though in practice this information is in-

accessible. We have also argued that these observations can be extended to spherically-symmetric

four-dimensional black holes [12], whose horizon geometry is encoded in a similar SU(1,1)/U(1)

coset structure, accompanied by a similar infinite-dimensional W symmetry and an associated infi-

nite set of ‘hair’ that is measurable in principle [13].

Constructions using D-branes provided explicit examples of four-dimensional black-hole so-

lutions whose microstates could be counted [8], giving numbers consistent with the Bekenstein-

Hawking entropy and suggesting that indeed the ‘lost’ information could in principle be retained.

However, there still remained the issues how the information was transferred to and from these mi-

crostates, in what form it was stored, and whether the information transferred into the microstates

could in practice be extracted, or whether it was in reality lost.

An interesting approach to addressing these issues has recently been taken in a series of pa-

pers by Strominger and collaborators [14, 15]. They have shown that spherically-symmetric four-

dimensional black holes carry an infinite set of gravitational ‘hair’ associated with BBMS super-

translations [16, 17] on the retarded null infinity I +, corresponding to vacua that differ by the

addition of soft gravitons and could be measured via the gravitational memory effect. They also

found an infinite set of inequivalent electromagnetic gauge configurations corresponding to elec-

tromagnetic hair and differing by the addition of soft photons. It has recently been suggested by

Hawking [18] that the apparent information loss paradox might be resolved by considering super-

translations on the horizon, with the information ‘lost’ by incoming particles being recoverable in

principle, though lost in practice.

This proposal raises many questions, including whether supertranslations (together with su-

perrotations and the corresponding electromagnetic gauge configurations) are capable of encoding

all the information carried by the incoming particles [19], as well as the relation to the stringy de-

scription of black holes, the details of the mechanism for information transfer to and from the black

hole, and whether information is really lost. We mention here for completeness the recent work

of ‘t Hooft [20], where it is argued that the black-hole horizon should be viewed as an apparent

world-sheet of an induced string theory. This is to be contrasted with the spirit of our approach in

this paper, where we start from string theory at a fundamental level. We also mention the recent

work of Polchinski [21] in which a shock-wave approximation was used to calculate the shift on a

generator of the horizon caused by an ingoing wave packet, which is similar in spirit to our analysis
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Stringy Black Holes Retain Information

below of the supertranslation of the horizon (viewed as a recoiling D-brane) induced by infalling

matter. Other works in similar spirit include [22, 23], where the back-reaction of matter falling

onto the black hole horizon (and fluctuations of the latter) is argued to play an important rôle in

retaining information.

In this paper we review our previous arguments about the importance of W∞ symmetry [24,

25] 1 for ‘balancing the information books’. In particular, we recall that a massless stringy particle

interacting with the black hole is represented by a conformal operator on the world-sheet of the

string, which is exactly marginal only if a contribution from W∞ generators is included in its vertex

function [10, 6]. Without this contribution, the corresponding renormalization-group (RG) β func-

tion is non-zero, leading to an inexorable increase in entropy. As we recall [10, 11], w∞ (which is

the classical limit of the quantum W∞ symmetry) is the algebra of transformations that preserve the

two-dimensional phase-space volume of massless (‘tachyonic’) stringy matter propagating in the

background of a stringy black hole.

Moreover, these quantum W -algebras are symmetries of the quantum scattering matrix of the

corresponding two-dimensional string theory [26, 6], in the sense that the operator product ex-

pansion between two appropriate vertex operators reproduce the corresponding W -algebra. In the

flat space-time case (in which case the string theory is just a two-dimensional Liouville theory)

the operators corresponding to the discrete higher-spin operators of the W algebra are discretized

‘tachyon’ operators. However, as already mentioned, in the presence of a black hole, at the quan-

tum level, the corresponding W∞ symmetries necessarily mix massless and massive (topological,

delocalised) stringy states [6]. The admixture of W∞ generators in the exactly marginal vertex op-

erator of a massless string excitation shows how information is transferred between a stringy black

hole and external particles.

We discuss below the embedding of the two-dimensional coset describing the singularity in

a four-dimensional space-time [12] with the structure SU(1,1)/U(1) ⊗ S2, where S2 is a two-

dimensional manifold with the topology of the sphere that is to be identified with the horizon

of the four-dimensional black hole. Under certain circumstances specified below, in addition to

the quantum W -symmetries that leave the (quantum-gravity) scattering matrix invariant, and are

associated with the discrete (topological) states of the two-dimensional coset substructure, there

is also a classical w∞ algebra of symmetry transformations of the horizon coordinates that pre-

serves the area of the horizon of an isolated spherically-symmetric four-dimensional black hole, so

that its entropy (which is known to be a Noether charge [27]) is conserved. The precise relation

between these two different W -symmetries is not yet completely understood. It becomes evident,

however, in the case where the horizon of the black hole is represented as a thick (recoiling) brane,

which is known to correspond to an SU(∞) gauge theory [28, 29]. The black hole emerging in the

low-energy limit of this string/brane theory is the infinitely-coloured SU(∞) black hole discussed

in [30], which is reviewed below. In this case, the gauge states on the horizon can be represented

as open-string states whose ends are attached to the horizon brane, which then carry the SU(∞)

charges. It is known that classically such SU(∞) symmetries are isomporphic to the w∞ algebra

that preserves a two-dimensional area, which can in this case can be identified with the horizon

1This becomes W1+∞, if one includes conformal spin-one states. We denote by lower-case w∞ the classical symme-

try, and by upper-case W1+∞ its quantum counterpart, which includes an additional conformal spin-one state.
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Stringy Black Holes Retain Information

area of the spherically-symmetric, infinitely-coloured black hole.

2. Entropy Increase and Non-Critical String

In the usual treatment of critical string theory, entropy remains constant and, in particular,

pure initial states remain pure during the time evolution. A stringy discussion of the possibility

of information loss therefore requires going beyond the critical string framework. Accordingly,

we now recall our arguments [11] on entropy increase in non-critical string theory, i.e., in a string

model where conformal invariance on the world-sheet surface Σ is broken by relevant operators.

In such a case, the world-sheet dynamics depends on interaction terms that represent non-

critical deformations of the form

Sσ = S⋆σ +

∫

Σ
d2ξ

√−γ giVi (2.1)

where S⋆σ is a conformal fixed-point σ -model action, summation over repeated indices is implied,

γ is a world-sheet metric, and the set of {gi} is an (infinite in general) set of target-space fields

associated with the corresponding vertex operators Vi. These target-space fields include the lowest-

lying (massless) string modes, i.e., the graviton, dilaton and antisymmetric tensor fields, the scalar

‘tachyons’ (in the case of a non-supersymmetric target space), as well as the infinity of higher-spin

states 2.

We introduce a global world-sheet RG scale µ , and define T ≡ ln µ . We consider a density

matrix ρ(gi) describing the propagation of a string representing a matter state in the deformed

target-space background corresponding to the world-sheet action (2.1). This density matrix is a

generic function of the background fields {gi}. The renormalizability of the world-sheet two-

dimensional theory implies that any explicit dependence of ρ(gi) on T , represented by the cor-

responding partial derivatives, is compensated by the ‘running’ of the renormalised gi with T ,

leading to the following world-sheet RG equation:

0 =
d

dT
ρ(gi) =

∂

∂ T
ρ(gi)+

d g j

d T

∂ ρ

∂ g j
. (2.2)

It should be understood that the ∂i ≡ ∂
∂gi denote functional derivatives δ

δgi with respect to the cor-

responding fields gi in target space-time. Roughly speaking,

d g j

d T
≡ β i (2.3)

is a RG β function for the ‘coupling’ gi of the two-dimensional world-sheet field theory 3.

2In a two target-space-dimensional setting, the only propagating multiplet consists of massless scalar fields (mis-

leadingly called ‘tachyons’), whereas the graviton and higher-spin multiplets are topological states with discrete mo-

menta. As we discuss later, such topological states exist also in higher-dimensional target space-times, so their presence

is rather generic.
3More strictly speaking, in string theory the target-space dependences of the ‘couplings’ gi imply some diffeo-

morphism variations, which lead to the replacement of the corresponding β i RG functions by the corresponding Weyl

anomaly coefficients, but such complications are not relevant for our main arguments below, so we omit them here. For

details see [10].
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Representing (in a heuristic way) the density matrix by its Gibbs (equilibrium) form in target

space, one has, in terms of the effective target-space string Hamiltonian

ρ(gi) = Tre−β H , (2.4)

where β is an effective ‘temperature’ in target space, e.g., the Hawking temperature in the case of

a black hole. We assume that the Tr operation commutes with ∂/∂T , which is consistent with

the interpretation of the RG scale T as time (see below). We then deduce that the von Neumann

(entanglement) entropy,

S ≡−Tr
(

ρ lnρ
)

(2.5)

varies with T as
∂ S

∂T
=−Tr

[ ∂ ρ

∂T
lnρ

]

−Tr
[ ∂ ρ

∂T

]

. (2.6)

In [11] we have used Liouville dressing to restore conformal invariance on the world sheet, and

argued that the Liouville mode may be regarded as a local (on the world-sheet) covariant RG scale,

ρ(σ), where σ denotes the world-sheet coordinates.

In the presence of such a local world-sheet RG scale, there are counterterms in the σ -model

action of the form [11]:
∫

Σ
∂αgi

Gi j ∂αg j , (2.7)

where α = 1,2 span the world-sheet coordinates. The only dependences on them of the ‘renor-

malised’ couplings gi occur through their dependences on the local RG scale ρ(σ), so we can

write (2.7) as
∫

Σ
∂αρ ∂αρ β̂ i

Gi j β̂ j , (2.8)

where β̂ i ≡ dgi/dρ is a Weyl-anomaly coefficient. i.e., a world-sheet RG β -function with respect

to the local RG scale. The quantity G i j in (2.7, 2.8) acts as a Zamolodchikov ‘metric’ in the theory

space {g j} of the σ -model, i.e., in the space of target-space background fields. From conformal-

field theory considerations [11] that we do not discuss here, one has

d

dρ
Q2[g] ∝ β̂ i

Gi j β̂ j , (2.9)

where Q2 = C[g]− c⋆ is the central-charge deficit of the corresponding non-critical string theory

with central charge C[g] that is a functional of {gi}, and the quantity c⋆ is the central charge at a

conformal point.

The local RG scale ρ plays the rôle of a Liouville mode, which dresses the renormalised

couplings gi in such a way so as to restore criticality in the D+ 1 dimensional target space: we

find from (2.8) that the scale ρ is a propagating σ -model scalar field, and thus its zero mode

on the world-sheet may be interpreted as an extra target-space-time coordinate. The sign of Q2

depends whether the theory is subcritical or supercritical, with the supercritical case corresponding

to Q2 > 0. Actually, as discussed in detail in [11], the dependence of Q2[g] on the local RG scale

ρ is such that the derivative with respect to the world-sheet zero mode of ρ , ρ0, which is also

identified with the global RG scale T = ρ0, obeys dQ2/dρ0 ∝ −Q2 + . . ., as a result of the fact

that Q2 is proportional to the σ -model partition function, in which the RG scale couples to the

5
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world-sheet curvature as
∫

Dρ e−
∫

Σ ρ R(2)
, where

∫

Σ R(2) is the Euler characteristic of the world-sheet

manifold. In this way, one recovers from (2.8, 2.9) via perturbation theory the kinetic term of the

Liouville action, i.e., a term in the σ -model-field-theory action Sσ of the form

Sσ ∋−
∫

Σ
∂αρ ∂αρ (Q2 +̂ . . .) (2.10)

where, in our convention [11], the corresponding kinetic terms of the spatial target coordinates of

the string X I , I = 1, . . .3 have a minus sign.

In this case the zero mode of the world-sheet RG flow of this super-critical string can be

identified (up to a sign) with the temporal flow in the target space-time [11]:

t =−T (=−ρ0) . (2.11)

With this identification, the second term on the right-hand side of (2.6) would vanish in a theory

with energy conservation on the average, as for quantum black holes.

Then, using (2.2), (2.3) and (2.11), we obtain from (2.6):

∂ S

∂ t
=−Tr

[∂ ρ

∂ t
lnρ

]

= Tr
[

β
∂H

∂ t
ρ lnρ

]

=−Tr
[

β β i ∂H

∂gi
ρ lnρ

]

, (2.12)

where we have used (2.4) and the fact that H(gi) is a functional of the background fields.

In a string theory setting, the effective Hamiltonian H may be identified (up to a sign) with

the effective action Γ, and it is known in this case that its field variations are proportional off-shell

to the β i (which is equivalent to the well-known statement that the string conformal invariance

conditions on the world-sheet are equivalent on-shell to the equations of motion of the target-space

effective action):

∂H

∂gi
=− ∂Γ

∂gi
=−Gi j β j , (2.13)

where Gi j is the Zamolodchikov metric in the space of string models [11]. From (2.12), (2.13) we

then obtain
∂ S

∂ t
= ββ i

Gi j β j
S . (2.14)

Within the context of a unitary world-sheet σ -model, corresponding to a Euclidean target space-

time as can be used to represent a finite-temperature black holes, the factor β iGi jβ
j > 0. In this

case, then, (2.14) implies a monotonic entropy increase of the (positive) entropy S > 0 as time

increases, i.e., during the evolution from infrared to ultraviolet on the world sheet, whenever a

string propagates in a non-conformal background.

We use this result in the following, in the specific context of strings propagating in target-space

black hole backgrounds.

3. W∞ Symmetry Retains Information in a Two-Dimensional Stringy Black Hole

The prototypical stringy black hole solution in two dimensions [4] is characterized by a world-

sheet Wess-Zumino-Witten (WZW) σ -model formulated on the coset space SL(2,R)k/U(1), where

6
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k = 9/4 is the Kac-Moody algebra level. The conformal invariance condition for this world-sheet

σ -model induces a target-space metric corresponding to a Euclidean black hole background

ds2 = dr2 + tanh2 r dθ̃2 , (3.1)

where (r,θ) are two-dimensional coordinates, r being the radial coordinate and θ̃ a compact ‘an-

gular’ coordinate that plays the rôle of an external temperature variable: it should not be confused

with a four-dimensional angular variable. The space time (3.1) looks like a semi-infinite cigar,

and may be elevated to four dimensions via a similar formula with additional angular variables, as

described in Section 4.

The spectrum of stringy excitations in the two-dimensional stringy black hole includes back-

ground massive topological states that possess a quantum W1+∞ symmetry [24, 6] 4. This leads

to an infinity of conserved charges (‘hair’) for the black hole system, rendering it completely in-

tegrable [4]. The W1+∞ symmetry corresponds classically to a classical infinite-dimensional w∞

algebra of diffeomorphisms that preserve a two-dimensional area form, which could correspond

to the surface of a sphere S2 or some other two-dimensional manifold. In the case of the two-

dimensional stringy black hole examined in this Section, this is a symplectic phase space ‘area’

form, which corresponds to the Hamiltonian of a particle system in the near-horizon geometry

of the black hole. As we discuss later, this algebra appears also in the case of four-dimensional

stringy/brany solutions interpolating between black holes and AdS spaces.

Generically, a symplectic area two-form Ω corresponding to coordinates x,y:

Ω = dy∧dx (3.2)

is invariant under classical symmetry transformations that leave it invariant. These area-preserving

diffeomorphisms are generated by the quantities

vℓm = yℓ+1 xℓ+m+1 (3.3)

where ℓ and m are integers. The Poisson brackets of these generators satisfy the classical w∞

algebra

{vℓm, vℓ
′

m′}= [m(ℓ′+1)−m′ (ℓ+1)]vℓ+ℓ′
m+m′ . (3.4)

This includes a Virasoro symmetry generated by the operators Ln = v0
n, whose Poisson brackets

obey the algebra

{Ln, Lm}= (m−n)Lm+n , (3.5)

which is a subalgebra of the w∞ algebra (3.4).

We suggested in [10] that the infinite set of charges appearing in the quantum version of the w∞

symmetry should be considered as an infinite set of discrete hair (termed W-hair) that is responsible

for the maintenance of quantum coherence for the two-dimensional stringy black hole, since the

corresponding quantum-gravity scattering matrix, obtained from correlation functions of marginal

world-sheet vertex operators, is invariant under these symmetries.

4These symmetries were first discovered in operator product expansions of vertex operators corresponding to the

discrete stringy ‘tachyon’ states of the two-dimensional (target space) c = 1 Liouville string theory [26] that, from a

target space-time point of view, is the asymptotic limit of the Euclidean black hole of [4].

7
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Consider, for example, the propagation of a ‘tachyon’, which is a massless particle in two

dimensions. In flat space it is associated with the vertex operator:

φ c,−c

−1/2,0,0 = (g++g−−)
− 1

2 F(
1

2
;
1

2
;1;

g+−g−+

g++g−−
), (3.6)

where F denotes a hypergeometric function and gab, a,b = +,− represent the components of a

generic SL(2,R) element. The operator (3.6) is exactly marginal in a two-dimensional flat-space

string theory.

However, this is not the case in the background of a two-dimensional space-time black hole

(Euclidean or Minkowski, the latter being obtained by analytic continuation of the compact variable

(‘temperature’) in the cigar metric of [4]). In this case, the corresponding exactly marginal operator

is [6]

L1
0L0

1
= φ c,−c

−1/2,0,0 + i(ψ++−ψ−−)+ . . . (3.7)

where

ψ±± ≡: (J
±
)N(J±)N(g±±)

j+m−N : (3.8)

with J± ≡ (k−2)(g±∓∂zg±±−g±±∂zg±∓), and J
± ≡ (k−2)(g∓±∂z̄g±±−g±±∂z̄g∓±), where k is

the WZ model level parameter [4]. The combination ψ++−ψ−− generates a level-one massive

string mode, and the dots in equation (3.7) represent operators that generate higher-level massive

string states 5. As discussed in [10], these modes are solitonic, with fixed energy and momentum.

As such, they are completely de-localized in space-time.

Since the flat-space ‘tachyon’ vertex operator (3.6) is not exactly marginal in a black-hole

background, the corresponding RG β function is non-vanishing and hence, by (2.14), the entropy

associated with tachyonic ‘matter’ increases inexorably, i.e, information is lost, if the higher-level

string modes in (3.7) are neglected. Conversely, if these string modes are taken into account, the

corresponding RG β function vanishes, entropy does not increase with the world-sheet RG flow,

which we identify with the target-space temporal time flow in our approach. Thus, there is no

information loss: it is stored by the higher-level string modes.

In order to guarantee the exact marginality of the corresponding vertex operator (3.6), topo-

logical states must be included in the scattering matrix of strings in a two-dimensional black-hole

background. These topological modes are not detectable in a local scattering experiment, leading

to an apparent ‘loss’ of quantum coherence, which is an artefact of the phenomenological trunca-

tion of the scattering process within a local effective field theory (LEFT) framework. Associated

with this apparent ‘loss’ of quantum coherence there is an apparent ‘increase’ in entropy at a rate

quantified by the right-hand-side of (2.14), since the truncated RG β i functions of the non-marginal

propagating modes do not vanish.

Nevertheless, the conserved W-hair charges are in principle measurable, and ways for doing

so in principle have been outlined in [12]. These are reviewed in the next Section, where we also

present arguments for the elevation of the W-hair to four-dimensional space times. In this case,

5Another example of an exactly-marginal operator is L2
0L0

2
=ψ+++ψ−−+ψ−++ψ+−+ . . ., which also involves

in an essential way operators for massive string modes. The coupling corresponding to this world-sheet deformation of

the coset model is associated with a global rescaling of the target space-metric [6], and therefore to a global constant

shift of the dilaton field. Thus it produces shifts in the black hole mass [4].

8
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the area-preserving property of the W∞ symmetry becomes important for preserving the area of the

two-dimensional surface of the black-hole horizon.

4. Elevation to Four Dimensions

We have argued in [12] that the coset singularity structure of the two-dimensional stringy

black hole and generic properties of its associated discrete states have counterparts for spherically-

symmetric black-hole configurations in four space-time dimensions. We now review the basic

arguments supporting this conjecture, which have been reinforced by subsequent formal develop-

ments.

4.1 Embedding of the Two-Dimensional Black Hole

We consider a string theory with a spherically-symmetric gravitational background of black-

hole type, which is a solution of the Einstein equations, generalised to the effective field theory

derived from string theory. The metric tensor is given by an Ansatz of the form:

ds2 = gαβ dxα dxβ + eW(r,t)dΩ2 , (4.1)

where W(r,t) is a non-singular function, xα ,β denote the r, t coordinates, and dΩ2 = dθ2+sin2 θdφ2

denotes the line element on a spherical surface that does not change with time.

We remind the reader that in pure gravity all the classical spherically-symmetric solutions

to the equations of motion obtained from higher-derivative gravitational actions with an arbitrary

number of curvature tensors are static [31], and that a similar result holds for stringy black holes

at tree level. The standard Schwarzschild solution of the spherically-symmetric four-dimensional

black hole can be put in the form (4.1) by an appropriate transformation of variables.

We consider the Schwarzschild solution in Kruskal-Szekeres coordinates [32]

ds2 =−32M3

r
e−

r
2M dudv+ r2dΩ2 , (4.2)

where r is a function of u,v, given by

(
r

2M
−1)e

r
2M =−uv . (4.3)

Note that, although the two-dimensional metric components depend on the variables u,v, the black

hole solution is nevertheless static. Changing variables to

e−
r

4M u = u′ ,

e−
r

4M v = v′ (4.4)

and taking into account the Jacobian J of the transformation of the area element dudv, we can put

the two-dimensional metric in the form

gbh(u
′,v′) =

eD(u′,v′)du′dv′

1−u′v′
, (4.5)

with the scale factor being given by 16M2e−
r′(u′ ,v′)

2M J(u′,v′), where r′ is the coordinate r re-expressed

in therms of the coordinates u′,v′.

9
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The metric (4.5) is a conformally-rescaled form of Witten’s two-dimensional black hole solu-

tion [4]. Since the latter is described by an exact conformal field theory, the same is true after this

conformal rescaling. From a σ -model point of view, this rescaling simply expresses a change of

renormalisation scheme 6. The global properties, such as singularities, remain unchanged from the

two-dimensional string case.

4.2 Discrete Topological States

In particular, the infinite-dimensional W-symmetry associated with the SU(1,1)/U(1) coset

structure of the dilaton-graviton sector in the two-dimensional model is elevated to become a

model-independent feature of spherically-symmetric four-dimensional string configurations. Such

structures are intimately connected with the existence of topological solitonic non-propagating

states. These states are essentially spherically-symmetric solutions of the low-energy equations

of motion obtained from the string theory in manifolds with topology SU(1,1)/U(1) ×M 2, where

M 2 is a two-dimensional manifold of constant curvature. They are associated with jumps in the

number of degrees of freedom at discrete values of energy and momentum as a result of relaxation

of certain gauge theory constraints, as shown below. The simplest example is where M 2 = S2, the

sphere, which describes the spherically-symmetric four-dimensional black hole solution of interest

to us here. The associated infinity of discrete topological (non-propagating) states, with definite

energies and momenta, couple to the massless propagating ‘tachyon’ string matter and thereby

ensure conformal invariance of the associated σ -model action, as described above for the purely

two-dimensional stringy black hole of [4].

The infinity of discrete topological states in a D-dimensional target-space string theory are

similar in nature to those of the two-dimensional case [33, 26]. These states can be seen via the

gauge conditions for a rank-n tensor multiplet:

Dµ1Aµ1µ2...µn
= 0 , (4.6)

where Dµ is a (curved-space) covariant derivative. To illustrate our arguments, consider the sim-

plified case of weak gravitational perturbations around flat space, with a linear dilaton field of the

form Φ(X) = QµX µ , in which case the Fourier transform of (4.6) is

(p+Q)µ1Ã(k)µ1µ2....µn
= 0 (4.7)

We observe that there is a jump in the number of degrees of freedom at the discrete momentum

p = −Q. The fixed momentum corresponds to complete uncertainty in space, so such states are

delocalised, and can be considered as quasi-topological and non-propagating soliton-like states. In

ordinary string theories, such states carry a small statistical weight, due to the continuous spec-

trum of the various string modes. However, when strings propagate in spherically-symmetric four-

dimensional background space-times, these discrete states assume particular importance. Such

backgrounds are effectively two-dimensional, and therefore all the transverse modes of higher-

rank tensors can be gauged away using Ward identities of the form (4.6), except for the topological

6The function D(u,v) can be regarded also as a part of the two-dimensional dilaton in the given renormalisation

scheme.
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modes. In the case of four-dimensional spherically-symmetric black holes, these s-wave topolog-

ical modes constitute the final stages of their evaporation [10], and assume responsibility for the

maintenance of quantum coherence [10, 12].

4.3 Phase-Space-Area-Preserving w∞ Symmetries

In another example [9], a w∞ symmetry arises in the phase space of matter in a four-dimensional

extremal solitonic black hole background in the context of N = 2, D = 4 supergravity. This is a

BPS solution that interpolates between a maximally-supersymmetric AdS4 space-time at large ra-

dial distances and AdS2 ×H2, where AdS2 refers to the radial-coordinate/time part of the space-

time and H2 refers to the angular part of the space-time, which is a hyperbolic two-dimensional

manifold of constant curvature. The AdS2 ×H2 geometry characterises the space-time near the

horizon of the black hole. The analysis of [9] showed that the dynamics of a quantum-mechanical

massive particle with non-trivial magnetic charge in the near-horizon geometry is described effec-

tively by a one-spatial-dimensional Hamiltonian H , characterised by a w∞ symmetry that preserves

the two-dimensional phase-space area symplectic form Ω = d p∧ dq− dH ∧ dt, with q the spatial

coordinate, p the canonical momentum and t the time. The energy spectrum of this particle is con-

tinuous and bounded from below: E > 0, but the ground state is non-normalizable, with an infrared

(IR) divergence, which was regularised in [9] by putting the system in a box. The IR-regularised

system is also invariant under a w∞ that contains a Virasoro symmetry (3.5), which can be associ-

ated with the asymptotic symmetries of the AdS2 space time, i.e., the diffeomorphisms that leave

invariant the AdS2 metric, whose quantum version includes a central extension. Such asymptotic

symmetries are symmetries of the quantum-gravity scattering matrix for the full four-dimensional

AdS2 ×H2 extremal black hole of [9] 7.

Hence, the particle system is characterised by an infinity of conserved charges of the vℓm type

(3.3), in which the rôle of the x,y coordinates is played by appropriate combinations of the phase-

space coordinates of the particle [9], and hence is completely integrable. From our point of view,

the presence of an infinity of conserved quantities for the particle in the near-horizon geometry

of the black hole also guarantees quantum coherence, in the sense that the infinity of conserved

charges vℓm, which remain constant during the scattering of matter off the black-hole background,

retain information during the evaporation of the latter. The situation of the coherence-preserving

w∞ algebra is exactly analogous to that preserving the phase-space area for a massless ‘tachyonic’

string matter in the two-dimensional stringy black hole - or its four-dimensional extension with

topology SU(1,1)/U(1) ×S2 - as discussed above.

As discussed above, the elevation of such classical phase-space-area- w∞ symmetry algebras

to fully quantum coherence-preserving algebras necessarily involves discrete topological states of

the string. In two dimensions, as we have seen, the latter mix with the propagating massless matter

states in order to guarantee the conformal invariance of the corresponding vertex operators in the

presence of a stringy black hole background [10], and hence preserve quantum coherence according

to the general arguments of Section 2.

7An asymptotic symmetry of the quantum-gravity scattering matrix under supertranslations of generic black hole

backgrounds has been examined in [14, 15].
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4.4 W-hair and Quantum Coherence

As discussed in [13], each of these discrete solitonic states can be represented as a singu-

lar gauge configuration, whose conserved W -charges can be measured in principle by generalized

Aharonov-Bohm phase effects. Moreover, the topological higher-spin string states leave their im-

print via selection rules in the scattering matrix, where they appear as (resonance) poles, corre-

sponding to discrete energies and momenta and leading to certain selection rules. In the stringy

black hole case, there is an infinite set of such black hole soliton states, classified by the quadratic

Casimir and ‘magnetic’ quantum numbers of an internal symmetry group [13], which are excited

at calculable energies and decay into distinctive combinations of light final-state particles.

The stringy scattering matrix is, in general, well defined in the presence of such black-hole

backgrounds, since the world-sheet correlation functions among the appropriate exactly marginal

vertex operators are unitary. This is because, as mentioned previously, in addition to the parts

corresponding to the propagating string states, these operators contain an infinity of topological

non-propagating states. In practice, scattering experiments in the laboratory, which involve a finite

number of localised (in spacetime) particle states, cannot detect the delocalised states. Hence, from

the point of view of a local low-energy observer, there would be an apparent decoherence, although

this would not entail any pathologies in the full stringy theory of quantum gravity.

5. Phase-Space vs Horizon-Area-Preserving W Symmetries

We now explore the potential relation between the quantum W1+∞ algebras that are symmetries

of the stringy quantum gravity S-matrix and the classical area-preserving symmetries that preserve

the horizon area of a classical (non-evaporating) black hole and hence its entropy. This relation is

subtle, and at present is not understood in its full generality, at least by the authors. Nevertheless,

as we shall discuss below, by representing the horizon of the black hole as a thick D(irichlet)

brane, such a relation becomes evident. As a prelude to this result, we first discuss the case of an

infinitely-coloured four-dimensional black hole in a SU(N → ∞) Yang-Mills gauge theory, which

has an infinite amount of gauge hair, as allowed by the ‘no-hair’ theorem [30].

5.1 Black Holes with Infinitely-Coloured Hair

As we have discussed, the classical w∞ algebra preserves the two-dimensional area of an ‘inter-

nal space’ with the topology of a sphere [24, 25]. The issue is whether the ‘internal’ sphere can be

identified with the real horizon of the spherically-symmetric four-dimensional Schwarzschild black

hole. To address this question, we consider examples of four-dimensional spherically-symmetric

black holes with infinitely-coloured hair, which realize explicitly a classical w∞. These appear

in an effective field theory example of a black-hole solution in SU(N → ∞) gauge theory in a

four-dimensional AdS space-time with negative cosmological constant, which plays the role of a

regulator for the black-hole solution that makes it well-defined [30]. This anti-de-Sitter (AdS) reg-

ulator was given physical significance via the AdS/CFT bulk/boundary correspondence, and turns

out to be physically important, as we argue below. For the present discussion, the interest of these
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black holes with black holes with infinitely coloured hair is that classically there is an isomorphism

between SU(N → ∞) and w∞ [24, 28] 8.

To develop this point, consider a unit sphere S2 with coordinates θ ,φ and the quantities:

x1 = sinθ cosφ , x2 = sinθ sinφ , x3 = cosθ , with
3

∑
i=1

x2
i = 1 . (5.1)

The spherical harmonics Yℓm(θ ,φ) are harmonic polynomials of degree ℓ in xi:

Yℓm(θ ,φ) = ∑
ik=1,2,3k=1,...,ℓ

α
(m)
i1...iℓ

xi1 . . .xiℓ . (5.2)

For fixed ℓ there are 2ℓ+ 1 linearly independent symmetric and traceless tensors α
(m)
i1...iℓ

, m =

−ℓ, . . . , ℓ. Let us consider an SU(2) subgroup of the SU(N) group in the limit N → ∞, generated by

Si with standard commutation relations

[

Si , S j

]

= iεi jk Sk .

From the standard theory of angular momentum [34, 29], we know that a representation of the

N2 −1 generators of the group SU(N) can be expressed as follows in terms of the Si matrices and

the α-tensors in (5.2):

S
(N)
ℓ ,m = ∑

ik=1,2,3k=1,...,ℓ

α
(m)
i1...iℓ

Si1 . . .Siℓ

[

S
(N)
ℓ,m , S

(N)
ℓ′,m′

]

= i f
(N)ℓ′′,m′′

ℓ,m;ℓ′,m′ S
(N)
ℓ′′,m′′ . (5.3)

Upon the rescaling

Si → Ti ≡
2

N
Si , (5.4)

we arrive at bounded matrix elements as N → ∞: |(Ti)
a
b| ≤ 1, with the well-defined commutator

algebra
[

Ti , Tj

]

= i
2

N
εi jk Tk → 0, N → ∞ . (5.5)

and the Casimir element

T 2 =
3

∑
i=1

T 2
i = 1− 1

N
→ 1, N → ∞ . (5.6)

We conclude from (5.5) and (5.6) that in the N → ∞ limit, a representation of the (commuting)

generators of the SU(2) subgroup of SU(∞) is provided by the quantities xi in (5.1). If one con-

siders any two functions of xi on a spherical surface, f (x1,x2,x3),g(x1,x2,x3), each of which can

be expanded in terms of the spherical harmonics (5.2), (5.5) shows that in the limit N → ∞ the

corresponding matrix polynomials of the generators f (T1,T2,T3) and g(T1,T2,T3) satisfy

N

2i

[

f , g
]

→ εi jk

∂ f

∂ x j

∂g

∂ xk

, N → ∞ . (5.7)

8For SU(N) gauge theories with finite N, the geometry of the corresponding space is non-commutative [29], the

commutativity being restored in the limit N → ∞.
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Replacing the SU(2) generators in (5.3) by the rescaled ones (5.4), one finds for the N2−1 matrices

T
(N)
ℓm :

N

2i

[

T
(N)
ℓ,m , T

(N)
ℓ′,m′

]

→ {Yℓ,m , Yℓ′,m′}, N → ∞ . (5.8)

The Poisson (classical) algebra of the spherical harmonics is known to be that of the infinite-

dimensional area-preserving diffeomorphisms on the sphere SDi f f (S2):

{Yℓ,m ,Yℓ′,m′} =
M(ℓ+ ℓ′−1, m+m′)

M(ℓ, m)M(ℓ′, m′)
(ℓ′m− ℓm′)Yℓ+ℓ′−1,m+m′

+ ∑
n=1

g2n(ℓ, ℓ
′)C

ℓ+ℓ′−1−2n,m+m′

ℓ,m,ℓ′,m′ Yℓ+ℓ′−1−2n,m+m′ , (5.9)

where the M, g2n are normalization functions and the structure constants C are given in the fourth

paper in [24]. This algebra is known to be isomorphic to the classical area-preserving w∞ algebra.

Since the classical gauge fields of the SU(N → ∞) gauge theory can be expanded in the basis

of the matrices T
(N)
ℓ,m , the above considerations, and in particular (5.8), indicate that in this ex-

ample of an infinitely-coloured gauge black hole, this area-preserving diffeomorphism symmetry

preserves the horizon area, once we identify the ‘internal’ sphere S2 with the actual horizon sphere

of the spherically-symmetric SU(∞) black hole. In this case, the entropy of the black hole can

be preserved classically by the w∞ hair. If one views this SU(∞) gauge theory as a low-energy

limit of some string theory then, in view of our world-sheet renormalization-group interpretation

of the target time that leads to (2.14), the conservation of the classical area should correspond to

the conformal invariance of the corresponding world-sheet, which guarantees the vanishing of the

right-hand-side of (2.14) through the zeroes of the β i functions of appropriate combinations of the

couplings gi. In the case at hand, the set {gi} consists of the graviton Gµν and SU(∞) gauge field

background modes: Aa
µ ,a = 1 . . .∞.

Hence one can understand the entanglement of the massless (propagating) graviton states in

this four-dimensional extremal black hole with the discrete infinity of gauge states by analogy with

the entanglement of the propagating massless ‘tachyonic’ matter with the infinity of the discrete

massive states in the two-dimensional black hole case, (3.6, 3.7), as follows.

Upon embedding the SU(∞) gauge theory in a string model with propagating graviton and

gauge field backgrounds, one deforms the corresponding σ -model by adding to the usual graviton

(spin-2) deformations the following vector deformation of the gauge field Aa
µ :

Z =
∫

[DX ]e
1

2πα′
∫

Σ

√
γ∂α X µ ∂ α Xν Gµν (X) Tr

(

e
∫

∂ Σ Aa
µ ta∂τ X µ

)

. (5.10)

Here we use the standard notation for a σ -model propagating on a world-sheet Σ with a boundary

∂Σ (to accommodate open strings corresponding to gauge field excitations), describing the motion

of a string in a target-space with coordinates X µ and a metric background Gµν(X). The trace Tr is

over colour indices, and the ta are the generators of the SU(∞) colour group.

The presence of an AdS background with a non-vanishing cosmological constant Λ < 0 as a

regulator for the black hole of [30] implies that, on embedding such a theory in a string theory,

the graviton world-sheet β -function, β G
µν , is no longer zero. Indeed, a σ -model one-loop analysis,

which suffices for the weak gravity in the near-horizon black-hole geometry that we consider here,
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is given by the target-space Ricci tensor:

β G
µν = Rµν , (5.11)

which for an anti de Sitter space time reads

RG
µν = Λgµν 6= 0 ,Λ < 0 .

If this divergence were not cancelled against other background fields, so as to restore marginality of

the corresponding world-sheet operator, then there would be entropy increase under the RG flow,

which in our approach is identified with real-time flow (2.14), and thus information loss in the

classical stationary black-hole background.

The presence of an infinity of gauge fields can provide a resolution to this problem with the

infinity of zero-momentum gauge field modes Aa
µ ,a = 1, . . .N → ∞ condensing:

〈
∞

∑
a=1

Fa
µνFaµν〉 6= 0 . (5.12)

The infinite number of colours plays a crucial rôle in guaranteeing a macroscopic occupation of

the quantum-mechanical ground state of this system, which is a prerequisite for the formation of a

quantum condensate. One needs delocalised zero modes, because they are constant in space-time,

and hence their condensation guarantees the space-time translational invariance of the condensate.

In string theory there is an infinity of higher-order self-interactions among the gauge fields in the

low energy string effective action, which can lead to the formation of such a condensate.

Coupling gauge fields and gravitons, the corresponding graviton β -function (5.11) is modified

in the presence of such a condensate (5.12) to

β G
µν = Λgµν +

1

2
V (〈Fa

µν Fa
µν〉)gµν , (5.13)

where V (〈Fa
µν Fa

µν〉) is the scalar vacuum energy arising from the condensate. The structure on the

right-hand side of (5.13) is the only one consistent with Lorentz invariance of the vacuum. The

form of V (〈Fa
µν Fa

µν〉) is, to lowest order in the field strengths:

V (〈Fa
µν Fa

µν〉) ∝ 〈Fa
µν Fa

µν〉+ . . . > 0 , (5.14)

where the . . . indicate higher derivative terms that are present in string theory and are essential

in providing the necessary self-interactions among the non-Abelian gauge fields to guarantee the

formation of condensates.

We observe from (5.14) and (5.13) that a cancellation of the right-hand-side is possible because

Λ< 0 for AdS backgrounds. Thus we recover a conformal graviton background in the presence of a

condensate formed by the delocalised gauge states. The latter realize a W∞ algebra, which preserves

classically the horizon area of the black hole, thus providing a picture of the area-preserving nature

of the W-hair that is consistent with the conformally-invariant mixing of graviton states with the

infinity of gauge states.
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5.2 Horizons as ‘Thick’ D(irichlet)-Branes and SU(∞) Gauge Theory

If we represent the horizon of the four-dimensional black hole as a two-brane, then we imme-

diately face the problem of recoil once a string matter state, represented by a closed or open string,

encounters the horizon surface. If it is a closed string, it may split into two open strings (to preserve

the chirality of the state), whereas if it is an open string then at least one of its ends will be attached

to the horizon, causing the latter to recoil in order to conserve momentum. The recoil of the hori-

zon induces local fluctuations on the horizon that can be studied using logarithmic conformal field

theory on the world-sheet [35, 36], that have also been argued to carry information [37]. A fluc-

tuating (recoiling) horizon may be represented (from the point of view of a low-energy observer)

as a ‘thick’ D-brane stack of N → ∞ concentric branes. For macroscopic black holes, with large

horizons compared to the wavelength of the infalling matter, such concentric branes may be well

approximated locally by a stack of parallel flat N → ∞ branes. Such constructions are equivalent

to SU(N → ∞) gauge theories [38], as can be seen intuitively by considering the topologically-

equivalent ways (N2 − 1 for SU(N) gauge theory) in which an open string can be attached to a

stack of N parallel D-branes.

When infalling matter crosses the horizon of such a thick-horizon-brane black hole, the recoil

is described by open string excitations that carry the SU(∞) charges, leading to the infinite hair

of the black hole and corresponding to the horizon-area preserving w∞ symmetry discussed previ-

ously in Subsection 5.1. The important aspect of this example is that now the SU(∞) symmetry is

also a coherence-preserving symmetry of the associated quantum-gravity scattering matrix in the

presence of the SU(∞) black hole.

5.3 Two-Dimensional W∞ Symmetries as Gauged Four-Dimensional Symmetries

In this subsection we speculate on a potential generalization of the above result to arbitrary

four-dimensional space-times with space-time singularities having the (stringy-black-hole-like)

structure SU(1,1)/U(1) ⊗ S2 or, more generally, embedding two-dimensional singularity structures

admitting W∞ symmetries into spherically-symmetric four-dimensional space-times with constant

curvature, as in the example of the four-dimensional black-hole soliton of [9].

Our starting point is the construction [25] of W∞ (and w∞) gauge theories in terms of (d +2)-

dimensional local fields, where d is the dimension of space-time on which the algebras live: d = 2

in the case of interest to us. One can define the W∞ quantum algebra as a commutator algebra

of Hermitian operators ξ (a,a†), where a,a† are the harmonic-oscillator annihilation and creation

operators. One may parametrize the operators ξ (a,a†) using coherent states:

: ξ (â, â†) :=

∫

d2ze−|z|2 |z > ξ (z,z) < z| ,

where |z >= eâ† z |0 >, < z| =< 0|eâ z, < z′|z >= ez′ z, â |z >= z |z >, < z| â† =< z|z, and the nor-

malization condition is
∫

d2ze−|z|2 |z >< z| = 1, with d2z ≡ 1
π Rez Im z, and the : ξ (â, â†) : is an

(anti-)normal-ordered operator, where the creation operators are always placed to the right of the

annihilation operators.
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The coordinates z,z are viewed in [25] as a group-theoretical (‘colour’) space. Introducing a

gauge potential Aµ(x, â, â
†), where µ = 1, . . .d is a d-dimensonal space time {x} index,

Âµ(x)≡ Aµ(x, â, â
†) =

∫

d2ze|z|
2 |z > Aµ(x,z,z) < z| (5.15)

and infinite-dimensional set of infinitesimal W∞ gauge transformations can be introduced as fol-

lows:

δ Âµ(x) = ∂µ ξ̂ (x)+ i
[

ξ̂ (x), Âµ(x)
]

, δAµ(x,z,z) = ∂µξ (x,z,z)−{{ξ , Aµ}}Moyal(x,z,z) ,

(5.16)

where {{., .}}Moyal denotes a Moyal bracket, defined as

{{ξ1, ξ2}}Moyal(z,z)≡ i
∞

∑
n=1

(−1)n

n

(

∂ n
z ξ1(z,z)∂ n

z ξ2(z,z)−∂ n
z ξ1(z,z)∂ n

z ξ2(z,z)
)

. (5.17)

In this construction, the generators of W∞, ρ [ξ ], are linear functionals of ξ (z,z) and satisfy at a

quantum level [25]:
[

ρ [ξ1], ρ [ξ2]
]

= iρ [{{ξ1, ξ2}}Moyal]. (5.18)

The classical area-preserving w∞ Lie algebra, obtained from W∞ by an appropriate contraction

discussed in [25], is then
[

ρ [ξ1], ρ [ξ2]
]

= iρ [{ξ1, ξ2}Poisson], (5.19)

where {., .}Poisson denotes the (classical) Poisson bracket.

Notice that, in this representation, the W∞ gauge fields Aµ(x,z,z) are defined in a d + 2-

dimensional space time {x, z, z} with a two-dimensional ‘internal’ space spanned by the {z, z}
coordinates. The Yang-Mills-type S action, which is invariant under the W∞ gauge transforma-

tions, has the form (5.16),

S =− 1

4g2

∫

ddx
1

4
Tr
(

F̂µν F̂
µν
)

: F̂µν = ∂µ Âν(x)−∂ν Âµ(x)− i
[

Âµ , Âν

]

, (5.20)

where g is a coupling constant, and can be rewritten using the coherent-state representation as [25]:

S = − 1

4g2

∫

ddxd2z
∞

∑
n=0

(−1)n

n
∂ n

z Fµν(x,z,z)∂ n
z F

µν(x,z,z) :

Fµν = ∂µAν(x,z,z)−∂νAµ(x,z,z)+{{Aµ , Aν}}Moyal(x,z,z) . (5.21)

The reader should notice the non-local nature of the action in terms of the z,z variables. In fact, as

stressed in [25], it is this non-local nature of the action that differentiates the W∞ from w∞ as far as

the association with the SU(∞) gauge theory is concerned. It is the spectrum of the W∞ that can be

viewed as the N → ∞ limit of SU(N), not that of the w∞.

Thus we see that, in analogy with the SU(N → ∞) example discussed previously, the group

Trace (here over the infinite-dimensional W -algebra) is replaced by an integral over the coordinates

of the two-sphere S2. In fact, in the action (5.21) there are no exponentially-damped e−|z|2 factors

so, in order to have well-defined expressions upon partial integration, one must require the fields

and their derivatives to vanish at z,z → ±∞. For the case of the sphere, there is no boundary,

17



P
o
S
(
P
L
A
N
C
K
 
2
0
1
5
)
0
8
9

Stringy Black Holes Retain Information

and hence one is not facing this problem. One should identify the (non-compact) variables z,z with

some stereographic-projection coordinates of the S2. In the spirit of (5.8), then, one may expect that

the infinite-dimensional W∞ gauge symmetry indeed corresponds to an area-preserving symmetry

that leaves invariant the area of S2, SDiff(S2).

For the stringy black hole of interest, the above considerations apply if we identify the gauged

W∞ symmetry with the W1+∞ of the string states discussed previously, which involves discrete de-

localised states. It has been shown in [39] that, for the asymptotically-flat two-dimensional string

theory, i.e., the c = 1 Liouville model, for each of these states one can construct ‘discrete gauge

states’, at various mass string levels corresponding to tensorial gauge fields, which satisfy the same

W∞ algebra as the topological discrete states of the two-dimensional string theory [26]. These

states carry the W1+∞ charges and thus one can gauge the W∞ algebras by coupling them to the cor-

responding currents. In this way one may have an explicit realisation of the gauge transformations

(5.16) for the two-dimensional string. The generalization to the curved black-hole background is

a non-trivial task, since one expects a mixing of various mass levels in the exactly-marginal vertex

operators describing the discrete gauge states, as with the standard topological states.

In fact there is a much simpler formal picture that describes the situation non-perturbatively

in the string coupling [4, 40]. Scattering theory around the particular solution of string theory that

describes the asymptotic state of the two-dimensional black hole, i.e., the c = 1 Liouville string in a

flat two-dimensional target-space background, is known to be described by a completely integrable

(and soluble) one-dimensional (quantum-mechanical) matrix model. The latter is essentially a

theory of free fermionic fields ψ(t) interacting with an inverted harmonic oscillator potential. The

fermions depend on the Liouville dimension, which is a ‘spatial’ coordinate r in this case. The W∞

charges in that case are described by the (infinite) set of the moments of the energy (Hamiltonian).

In fact, if one considers a state with incoming fermions of energies εi, i = 1, . . .k, the conserved

charges are

Qn =
k

∑
i=1

εn
i , (5.22)

which are conserved for each n= 1,2 . . .∞, where the charge n= 1 is the Hamiltonian of the system.

The W∞ symmetry algebra associated with these charges has a classical limit that is associated

with the canonical transformations that preserve the free-fermion phase-space (area-preserving

phase-space form), as we have discussed previously. From the detailed string theory consider-

ations of the associated Liouville theory described previously, we know that there exist discrete

gauge states that carry these charges [39, 40], i.e., the Qn (5.22) can couple to gauge fields, which

constitute elements of the gauged W1+∞ Lie algebras discussed above, leading to the w hair of the

black hole [10]. In the context of the matrix model, the space-time dimension of the gauge field is

d = 1. The embedding of such matrix models in four dimensions can then be done by identifying

the internal colour space z,z with the horizon surface of the four-dimensional black hole, whose

asymptotic state is described by the c=1 Liouville string theory.

5.4 Hawking radiation from spherically-symmetric black holes and W1+∞ symmetries

We close this Section by mentioning some important results that provide a link between

phase-space-area-preserving W1+∞ algebras and Hawking radiation in generic four-dimensional
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black holes with spherically symmetric horizons, which aids understanding the connection be-

tween phase-space W1+∞ symmetries and area-preserving diffeomorphisms of the horizon in a more

generic context than the SU(∞) black hole case discussed previously. It was shown in [41, 42] that

moments of the Hawking radiation emitted by a generic, non-stringy spherically-symmetric black

hole are connected to a W1+∞ algebra carried by higher-spin states, whose currents are sourced by

background fields of higher-spin states, which can be identified with the discrete gauge states [39]

discussed in our stringy approach [10] to black-hole singularities.

Crucial to the connection of Hawking radiation to W∞ algebras is the effective two-dimensional

conformal field theory representation [43] of the dynamics of matter fields in the near-horizon

geometry of a spherically-symmetric black hole, as adopted in our approach [10]. Within this

context, it is known that the quanta of Hawking radiation emitted from the horizon of a spherically-

symmetric black hole break general covariance. As shown in [43], this symmetry is restored (in the

sense that the corresponding gravitational anomalies in the quantum gravity path integral are can-

celled) in the case of a (1 + 1)-dimensional black body at the black-hole Hawking temperature [2].

Thus, one can represent the effective two-dimensional field theory of the Hawking radiation on

the black-hole horizon as a two-dimensional field theory with an infinity of two-dimensional con-

formal quantum fields with a thermal spectrum, with the left movers corresponding to radially

infalling matter and right movers to outgoing matter.

Schwarzschild black holes emit Hawking radiation with a Planck distribution

N±(ω) =
1

eβ ω ±1
(5.23)

where β is the Hawking temperature [2], ω is the frequency (energy) of the radiation quantum, and

+ (-) corresponds to fermions (bosons) respectively. The full spectrum of the (Fourier-analyzed)

radiation is encoded in the higher moments or fluxes [41]. The energy flux, for instance, is given by

the second moment of N±(ω), F2(ω) =
∫ ∞

0
dω
2π ω N±(ω). The complete thermal Hawking radiation

spectrum is specified by the infinity of higher moments:

F+
2n =

∫ ∞

0

dω

2π
ωn−1 N+(ω) = (1−21−2n)

B2n

8π n
κ2n , (5.24)

or

F−
2n =

∫ ∞

0

dω

2π
ωn−1 N−(ω) =

B2n

8π n
κ2n , (5.25)

where the B2n are the Bernoulli numbers and κ = 2π/β is the surface gravity of the black hole.

An interesting proposal was made in [41] that the higher fluxes F2n, n > 1 could be connected

to phenomenological higher-spin currents (with appropriate normal ordering), i.e. higher-spin gen-

eralizations of the energy-momentum tensor, which is the spin-two current associated with the

energy flux. As shown in [41], these higher currents can be expressed in terms of two dimen-

sional boson and fermion fields, involving linear combinations of (two-dimensional) space-time

derivatives acting on the fields. In an appropriate light-cone coordinate (u,v) description, the out-

going near-horizon Hawking radiation is described by holomorphic (u-dependent) currents of the

following form in the scalar case [41]:

JB
uu...u = linear combinations of : (−1)n+m ∂ m

u φ ∂ 2n−m
u φ : , (5.26)
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where : . . . : denotes appropriate normal ordering, as defined in [41] 9.

It should be noted that there are ambiguities in the representation of the higher moments of the

Hawking radiation in terms of conformal fields on the horizon, reflected in the relative coefficients

of the various terms appearing in the holomorphic currents (5.26). Moreover, the currents are not

normalizable in general. However, these issues have been resolved by the proposal of [42] that

the coefficients of these currents be fixed by a symmetry principle, namely by the postulate that

there is a higher symmetry in the horizon of the black hole than the Virasoro symmetry, namely a

W∞ algebra. It was to be expected from their higher-derivative holomorphic structure, ∂ n
z χ (χ =

φ ,ψ) [24] that the currents could be cast in such a way as to form an infinite-dimensional algebra.

In a flat two-dimensional space-time, after Euclideanisation and replacing the light-cone co-

ordinates u,v by the complex variables z, z respectively, the w∞-generating bosonic currents for the

conformal spin s states can be written in the form

j
(s)B
z...z = qs−2 2s−3 s !

(2s−3)! !

s−1

∑
k=1

(−1)k
[ 1

s−1
(s)−1k ( s)−1s− k

]

: ∂ k
z φ(z)∂ s−k

z φ(z) , (5.27)

where : . . . : denotes normal ordering, defined in [42], and q is a complex (in general) deformation

parameter [24]. In this formalism the holomorphic free fields φ(z) are assumed to have two-point

functions of the form 〈φ(z)φ (z′)〉=−ln(z−z′), with the others vanishing. The deformation param-

eter q can be fixed [42] by demanding that the currents (5.27), when covariantised as appropriate

for the curved space-time of the spherical symmetric black hole (which is only conformally equiv-

alent to a flat space), reproduce the higher moments of the Hawking flux. The s = 2 current is

independent of the q deformation parameter, as expected from the fact that this current can be

identified unambiguously with the holomoprphic stress tensor

j
(2)
uu =−2π T hol

uu .

However, the higher-spin currents depend on q, and one must fix q = −i/4 [42] in order to repro-

duce the Hawking fluxes for bosons (5.25) when covariantising the expression (5.27) by replacing

the ordinary derivatives with covariant ones, as is appropriate for discussing the Hawking flux in

the conformally-flat metric that represents the near-horizon geometry of the black hole.

As discussed in great detail in [42], the currents (5.27) and their fermionic counterparts with

spins higher than two are free of conformal or diffeomporphism anomalies (or, if the latter exist,

they are trivial). This is consistent with the fact that the higher moments of the Hawking radiation

are expected to describe a theory free of gravitational anomalies, since only the spin-two current

(stress tensor) of the theory has diffeomorphism or conformal anomalies, and their cancellation

required the appearance of the Hawking radiation spectrum [43]. Moreover, this is also consistent

with the fact that, if these currents had conformal anomalies, they would correspond to new (non-

gauge) quantum numbers of the black hole, in violation of the no-hair theorem. Hawking radiation

is consistent with this theorem, which is then reflected in the absence of anomalies in the currents

corresponding to currents with spins higher than two.

9For the fermion case, see [41] and [44].
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The covariant higher-spin currents J
(s)B,F
µ1µ2...µn

are sourced by appropriate background fields

B
(s)B,F
µ1µ2...µn

:

J
(s)B,F
µ1...µn

=
1√
g

δ

δB(s)B,F µ1...µn
S , (5.28)

where S is the two-dimensional effective action of the Hawking radiation in the near-horizon geom-

etry of the spherically-symmetric black hole. The relevant interactions in this effective geometry

are then simply given by

Sint =
∫

near horizon 2D space−time
d2x

√
g ∑

α=B,F

B
(s)α µ1...µn J

(s)α
µ1...µn

, (5.29)

and the background fields B(s)α µ1...µn may be taken taken to vanish at asymptotic spatial infin-

ity. Eqn. (5.29) generalises the spin-2 case, in which the corresponding spin-2 current (the stress

tensor) couples to the graviton field,
∫

d2x
√

gT µν gµν , which is characterised by diffeomorphism

invariance (acting as a ‘gauge symmetry’): δgµν = ∂(µξν) for an infinitesimal diffeomorphism

ξµ → xµ + ξµ , provided the stress tensor is conserved 10. As already remarked, the higher-spin

currents are free from conformal and diffeomorphism anomalies [42] and are conserved exactly,

and their conservation is associated with an infinity of Abelian gauge symmetries of the form

B
(s)
µ1...µn

→ B
(s)
µ1...µn

+∂(µ1
Ξµ2...µn) , (5.30)

where the (. . .) indicate the appropriate symmetrization of indices. The presence of these infinite

gauge symmetries is consistent with the no-hair theorem, as the spatial integrals of the currents

correspond to conserved charges. The existence of a W∞ symmetry of the matter in the near-

horizon geometry, which is larger than the Virasoro algebra, results in the complete integrability

of the matter system, and is analogous to the case of matter in the near-horizon geometries of

black-hole structures in the context of string theory [10, 9], discussed above.

This W∞ algebra is phase-space-preserving, as are the W∞ algebras discussed in the stringy

cases above. To see this, one may rewrite the (traceless) energy-momentum tensor of the two-

dimensional effective scalar theory using a point-splitting method [42]:

Tµν = limy→0 ∂µφ(x− y)∂ν φ(x+ y)−gµν

(

stress− tensor trace
)

= ∑
i=0

∑
j=0

(−1)i

i! j!
: yµ1 . . .yµi yν1 . . .yν j ∂µ ∂µ1

. . .∂µi
φ(x)∂ν ∂ν1

. . .∂ν j
φ(x) : (5.31)

This expression is covariantised by replacing the partial derivatives by covariant derivatives, giving

the right-hand-side of (5.31) a complicated expansion in terms of products of the higher-spin cur-

rents with y-dependent factors (5.31) that correspond via complicated background tensors B
(s)
µ1...µin

to the aforementioned background fields that source the higher-spin currents. For our purposes, the

most important feature of (5.31) is the fact that the right-hand side depends not only on the coor-

dinate xµ but also on the quantity yµ = dxµ in the cotangent bundle, and thus lives in a symplectic

10In the black-hole case, as we have discussed above, the diffeomorphism invariance is broken by the outgoing flux,

but the form of the transformation is included in (5.30).
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phase-space manifold, showing that the W1+∞ algebra generated by the higher-spin currents of the

Hawking radiation spectrum is a phase-space algebra.

One may associate these symmetries classically with horizon-area-preserving diffeomorphisms,

following the discussion of Section 5.1 for the SU(∞) coloured black hole case, but we reserve de-

tails for a future publication [44]. For our purposes here we only mention that the above-mentioned

W1+∞ field theories on the black-hole horizon (for fermion or boson fields) may be “gauged”, in

the way discussed in [25] and reviewed in Section 5.3, by considering the extension of the fields

in a space augmented with two extra dimensions ξ ,ξ that can be taken to be the coordinates of

the spherical horizon surface. The corresponding field theories of these (d+2)-dimensional fields,

where d the target-space dimensionality of the field theories on the horizon, are gauged in the

way discussed in detail in [25] 11 and can be shown to be invariant under the phase-space-area-

preserving diffeomorphisms of the coordinates ξ ,ξ , which can be taken to represent the spherical

black-hole horizon. It is in this way that the infinite-dimensional dynamical phase-space-area-

preserving W1+∞ symmetries (5.31) of the near-horizon currents representing the Hawking radia-

tion spectrum are related to classical horizon-preserving w∞ symmetry algebras. This is consistent

with the identification of the classical black hole entropy (that is proportional to the area) with a

classically-conserved Noether charge [27].

Before closing this discussion, we note an important difference of the two-dimensional c = 1

string theory description [4, 6] of the black-hole singularity [10, 12] from a generic two-dimensional

field-theoretic representation of the outgoing Hawking radiation, as discussed above. In the latter

case, as we have seen, higher-spin currents consist of higher derivatives of propagating local (boson

or fermion) fields, whereas in the c= 1 string theory representation one encounters necessarily non-

propagating discrete delocalised states in the excitation spectrum, which are non-thermal. These

states exist over and above the ordinary Hawking radiation fields and, as we have discussed above,

their presence has highly non-trivial consequences. These delocalised states correspond to gauge

states in the c = 1 string theory [39], which carry the phase-space-area-conserving and coherence-

preserving W∞ charges of the two-dimensional black hole singularity.

In our treatment, the singularity of the four-dimensional spherically-symmetric stringy black

hole is characterised by an infinite-dimensional W1+∞ phase-space symmetry, whose charges are

carried by the (infinity of) delocalised discrete, non-propagating higher-spin gauge states that are

responsible for maintaining quantum coherence [10]. On the other hand, the black-hole horizon

carries another set of phase-space W1+∞ symmetries, corresponding to higher-spin currents com-

posed of the propagating modes of the two-dimensional effective field theory in the near-horizon

geometry, representing the outgoing Hawking radiation flux. Thus, the Hawking radiation W∞

can be made to preserve the horizon area, but it is the discrete non-propagating string states that

preserve quantum coherence.

11One has d = 1 for the holomorphic fields that represent the outgoing Hawking radiation [43, 41, 42], which in the

case of string-theory-inspired black holes [10] can be represented non-perturbatively via the c = 1 matrix model [40].
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6. Quo Vadis Supertranslations?

6.1 D-Brane Recoil and Supertranslations

In order to understand better the microscopic mechanism for encoding information on the

horizon, we consider the back-reaction of the black-hole horizon induced by its interaction with

infalling matter. We first concentrate on the two-dimensional stringy black hole where the horizon

is a point in space. As discussed in the previous section, we can represent the horizon of such a

black hole as a D-particle defect in space, whereas the horizon of a four-dimensional black hole

can be represented by a spherical Dirichlet brane. Using D-branes enables us to consider the

‘momentary’ capture of string matter by the horizon, in the sense of a spontaneous change of

world-sheet boundary conditions from Neuman to Dirichlet. Such a process will lead to splitting of

a closed-string state into two open ones. If one considers closed-string states as corresponding to

gravitons and open-string states to gauge particles (including photons), this process may correspond

to the conversion of an infalling graviton into a pair of photons. In general, when one represents the

horizon of a black hole as a D-brane, the interaction with infalling string states implies a ‘recoil’ of

the D-brane.

In the pilot case of a black hole in two target-space-time dimensions, we consider a matter

particle represented by an open string falling into the horizon the interaction of the string with the

D-particle horizon implies that at least one end of the open string attaches to the D-particle defect.

As a result of the interaction, the D-particle undergoes a non-trivial change in velocity

ur =
gs

Ms

∆pr =
gs

Ms

ξr pr , (6.1)

where ξr denotes the fraction of the incident matter particle momentum that corresponds to the

momentum transfer ∆pr during the scattering. As discussed in [36] the non-trivial capture and

splitting of the open string during its interaction with the D-particle, and the recoil of the latter,

result in a local effective metric distortion of the form

ds2 = gµν dxµdxν = (ηµν +hµν)dxµ dxν : h0r = ur . (6.2)

In the black hole case of [4] with dilaton hair: Φ=−2lncoshr, the string coupling gs = eΦ becomes

weak at large distances: gs → 0 for r → ∞. Hence ui → 0 and the space-time distortion vanishes at

large distances, where the space is asymptotically flat.

The metric (6.2) can be generalised to higher dimensions, with a D-brane horizon recoiling

along the i’th spatial dimension, in which case the space-time distortion due to the recoiling D-

brane horizon can be written as

ds2 = dt2 +2uidxidt −δi jdxidx j . (6.3)

This metric was determined from world-sheet (logarithmic) conformal field theory considerations

in [36, 35]: the world-sheet deformations representing the recoil of the D-brane close a logarithmic

conformal algebra on the world-sheet of the string that represents a dragging of the reference frame

by the D-brane horizon as it moves slowly on the flat space-time background. On the other hand,

the string excitations represent relativistic particles, and thus they move at the local speed of light.
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One may perform a time coordinate change in the metric (6.3) to write it in the following form,

which is valid up to terms u3 for small recoil velocities |~u| ≪ 1, as is appropriate for macroscopic

black holes:

ds2 = dt2
ff +2uidxidtff −δi j(dxi −uidtff)(dx j −u jdtff)+O(u3) . (6.4)

The metric (6.4) is the Gullstrand-Painlevé metric [45], which represents the geometry around the

exterior of a Schwarzschild black hole. It represents the space falling into the black hole as a

Gallilean ‘river’ on a flat space-time in which relativistic ‘fish’ may swim. The river represents the

frame of the recoiling D-particle horizon, while the fish are the relativistic matter strings [46]. In

(6.4), tff is the time of a free-floating observer who is at rest at infinity, compared to the centre of

the black hole. We stress that, in the case of a black hole, the relative velocities ui are coordinate-

dependent, as already mentioned, due to the variation in the string coupling from being strong near

the black hole singularity to being weak on the horizon.

In general, the recoil velocity has components normal and tangential to the horizon. The for-

mer can be associated with changes in the horizon area, and hence the black-hole entropy, whereas

the latter would not change the area. In case of such a tangential recoil component, metrics of the

form (6.4), written in Bondi coordinates, are of the same form as metrics that have been discussed

in the past in connection with gravitational wave radiation in asymptotically-flat regions of space

time [16, 17], and are known to be associated with supertranslations of the Bondi retarded time

u ≡ tff + r

u → u+α(θ ,φ) , (6.5)

where α(θ ,φ) is a function of the angular coordinates θ ,φ . Such a retarded time was used in

[16, 17] to discuss outgoing gravitational wave signals arriving at a distant observation point. Such

BBMS+ transformations form an infinite-dimensional set of diffeomorphisms that include as a

subgroup the four-parameter group of ordinary translations. In the case of matter falling into the

black-hole horizon one may use instead the BBMS− transformations pertaining to the advanced

time v = tff − r, which amount to the supertranslations

v → v+ξ (θ ,φ) , (6.6)

where ξ (θ ,φ) is a function of the angular coordinates θ ,φ on the black-hole horizon brane. The

retarded (or advanced) time is viewed in general as a scalar function of the coordinates u(xµ ) that

obeys u,µ u,ν gµν = 0, implying that the hypersurfaces u = constant are light-like.

The generic space-times on which there are supertranslations that leave invariant the boundary

conditions have the form [17]

ds2 = (
V

r
e2β )du2 −2e2β dudr+ r2hAB (dxA −UA du)(dxB −UBdu) ,

2hABdxAdxB = (e2β + e2γ)dθ2 +4sinθ sinh(γ −δ )dθ dφ + sin2θ (e−2β + e−2γ)dφ2 , (6.7)

where u is a retarded time and (r,xA) are the three spatial coordinates, with xA = (θ ,φ) the angular

variables of the four-dimensional space-time appropriate for spherically-symmetric solutions of the

gravitational equations, with determinant dethAB = sin2θ . The functions V,UA,β ,γ ,δ are arbitrary

functions of the coordinates and, to match them with (6.4), one performs the advanced (retarded)

time transformation u (v) from tff as mentioned previously. The asymptotic flatness of (6.4), due to
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the asymptotic vanishing of the recoil-induced distortion of the space-time surrounding the black

hole horizon, implies the boundary conditions Lim
(

V/r = 1, Lim(rUA) = β = γ = δ
)

= 0 for

fixed u or v and r → ∞.

6.2 Supertranslations are not Enough

Hawking [18] has suggested that such supertranslations of an advanced Bondi time on the

black-hole horizon may solve the issue of quantum coherence. The proposal builds upon analyses

in the asymptotically-flat regime of a generic Schwarzschild black hole space-time by Strominger

and collaborators [14, 15], who have provided arguments that the horizon supertranslation trans-

formations can be viewed as a conformal Kac-Moody symmetry group, entailing an infinity of

conservation laws. This symmetry group is an infinite-dimensional diffeomorphism group that

leaves invariant the asymptotic BMS states as well as the generic quantum gravity scattering ma-

trix defined by means of asymptotic in and out quantum states. Section 6 of the first reference in

[15] made an association of these infinite supertranslation charges with hair for black holes, and

suggested that such charges ‘may bear on the information puzzle’ 12.

This suggestion looks similar in nature to the one we described above and in our previous

works [10, 12], but there are important differences, and we do not think that supertranslations are

sufficient to retain quantum coherence.

The supertranslations (6.5), (6.6) are symmetries of the asymptotic (large r) metrics and not of

the full black hole background space-time, since they correspond to physically-inequivalent met-

rics, as discussed in [16, 17]. This may be viewed as a sort of ‘spontaneous breaking’ of the super-

translation symmetries of the asymptotic Minkowski space-time by the black hole background. The

associated Goldstone bosons have been identified tentatively (in the semiclassical black-hole limit

of infinite entropy) [19] with delocalised graviton states of infinite wavelength. This proposal may

sound similar to our topological stringy states, though the situation for a finite-area (finite-entropy)

black hole is far from clear.

However, in our picture the discrete topological string states include such soft graviton states as

a subset, along with an infinity of other higher-spin discrete (topological) states, all corresponding

to conserved charges. These higher-spin states are separated by mass gaps ∝ nMs/gs , n ∈ Z+.

Hence, given that on the horizon the string coupling is weak, such states may seem to be decoupled

at the level of the local effective field theory level (LEFT), leaving only the massless graviton

states as relevant. However, we conjecture that, for information retention at a finite-area black-hole

horizon, one must consider the entirety of the delocalised (topological) higher-spin states, whose

treatment goes beyond LEFT. These realize an infinite-dimensional area-preserving quantum W∞

symmetry algebra (with its infinity of conserved charges) in the coset black-hole model. This

12We know no obvious association of Kac-Moody algebras to the W∞ area-preserving algebras discussed here, except

in the supersymmetric case considered in [47], where an area-preserving diffeomorphism algebra SDiff(M ) of a two-

dimensional surface M acts as a derivation algebra on a super-Kac-Moody algebra, much as Virasoro algebras act as

derivation algebras on Kac-Moody algebras on a one-dimensional circle S1. The implications of this result in our case

are not obvious. However, we recall that when one supersymmetrises the two-dimensional black hole to a (twisted

topological) N = 2 theory, a double W1+∞ ⊗W1+∞ describes the singularity structure [48], which is broken → W1+∞

away from it. The findings of [47] may be relevant in the case when this N = 2 model is embedded in four dimensions.

However, any connection between the supertranslation U(1) Kac-Moody algebra on the black-hole horizon [14] with

(super-)W∞ horizon-area-preserving diffeomorphisms is currently unclear.
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picture is in agreement with the representation of the two-dimensional black hole horizon in four

space-time dimensions as the world-sheet of a string, where a classical w∞ world-sheet symmetry

preserves the area, and thus ensures information retention. Such world-sheet w∞ symmetries can

be elevated to target space by means of appropriate world-sheet deformations, corresponding to

the various excitations of the higher-spin target-space states [13]. Moreover, we have argued that

a recoil displacement of a D-brane due to a ‘sudden’ impulse, as is the case of a string splitting

on the horizon brane, merely mislays information that is stored on the horizon [37], in the sense

that entanglement is induced between the recoiling quantum D-brane horizon and the quantum

matter subsystem. The precise reproduction of the finite-area black-hole entropy for the generic

four-dimensional black-hole case remains to be worked out (although arguments have been given

in this direction for the two-dimensional stringy black hole in [12]), and we plan to return to this

issue in the near future.

We consider that our view of discrete W-hair and the representation of the black-hole horizon

as a D(irichlet) brane recoiling under the interaction with infalling matter is more appropriate than

supertranslation invariance for maintaining quantum coherence. We would argue that any approach

based on general relativity alone is limited in scope, and that string-theoretical considerations based

on the rigorous counting of black-hole microstates, such as those outlined above, constitute a much

more promising approach to the black-hole information-loss problem. In particular, we recall that

the W∞ algebra corresponds to an SU(N → ∞) algebra, as discussed in Section 4.4, and that the

superstranslations (and the corresponding U(1) gauge states) do not include candidates for all the

infinitely-coloured hair discussed there.

7. Conclusions and Outlook

We have reviewed and extended in this paper our previous arguments for the importance of

infinite-dimensional W∞ symmetry in information retention by stringy black holes. This symmetry

preserves two-dimensional area. As such, it plays a key rôle at the world-sheet level, ‘balancing

the information books’ [10] in the two-dimensional black-hole model of [4], which may be el-

evated to four dimensions to describe a spherically-symmetric black hole [12]. In this case, the

entropy is proportional to the area of the horizon, so entropy is therefore clearly conserved by a W∞

symmetry. The same symmetry preserves the area of the two-dimensional phase space describing

a fermion interacting with a four-dimensional extremal black hole in the context of N = 2, D = 4

supergravity [9].

As we have stressed in this paper, there are still many open issues in our approach to the black-

hole information problem based on W∞ symmetry, but we consider it to be much more complete and

promising than recent suggestions [14, 15] based on supertranslations [16]. The W∞ symmetry is

firmly embedded within string theory, which must surely be taken into account in any resolution of

the black-hole information problem. Also, as can be seen from its relation to SU(∞), W∞ symmetry

certainly offers conserved charges (W -hair) that are not provided by supertranslations.

We have argued elsewhere that the W -hair of a four-dimensional black hole is in principle

measurable [13], though this may not be feasible in practice [11]. For this reason, we consider that

black holes ‘mislay’ information rather than ‘lose’ it. However, we still lack a specific ‘Ariadne’s
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thread’ of external measurements that can enable us to reconstruct the information ‘mislaid’ within

the black-hole labyrinth.
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