
P
o
S
(
P
L
A
N
C
K
 
2
0
1
5
)
0
9
0

The quark flavor problem and spontaneous breaking
of flavour SU(3)3

E. Nardi∗
INFN-Laboratori Nazionali di Frascati
C.P. 13, I-00044 Frascati, Italy
E-mail: enrico.nardi@lnf.infn.it

A SU(3)Q×SU(3)u×SU(3)d invariant scalar potential breaking spontaneously the quark flavour
symmetry can explain the Standard Model flavour puzzle. The approximate alignment in flavour
space of the vacuum expectation values of the up and down ‘Yukawa fields’ results as a dynamical
effect. The observed quark mixing angles, the weak CP violating phase, and hierarchical quark
masses can be all reproduced at the cost of introducing additional (auxiliary) scalar multiplets,
but without the need of introducing hierarchical parameters.

18th International Conference From the Planck Scale to the Electroweak Scale
25-29 May 2015
Ioannina, Greece

∗Speaker.

c© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

mailto:enrico.nardi@lnf.infn.it


P
o
S
(
P
L
A
N
C
K
 
2
0
1
5
)
0
9
0

The quark flavor problem and spontaneous breaking of flavour SU(3)3 E. Nardi

1. Introduction

Fermion family replication represents probably the oldest unexplained puzzle in elementary
particle physics, dating back to the discovery of the muon by Anderson and Neddermeyer at Caltech
in 1936. With the discovery second and third generation particles, the puzzle became even more
intriguing: fermions with the same SU(3)C×SU(2)L×U(1)Y quantum numbers have been found
with mass values that span up to five orders of magnitude. Explaining such strongly hierarchical
mass patterns requires a more fundamental theory than the Standard Model (SM), and a plethora of
attempts in this direction have been tried. In the large majority they follow two types of approaches:

(i) The first is to postulate new symmetries under which fermions with the same SM quan-
tum numbers transform differently. The fact that fermion families appear to replicate is then just
an illusory feature of the low energy theory, ascribable to our incomplete knowledge of the full
set of fundamental quantum numbers. This is, for example, the basic ingredient of the popular
Froggatt-Nielsen mechanism [1], in which the hierarchy of the Yukawa couplings follows from a
dimensional hierarchy in the corresponding effective Yukawa operators, obtained by assigning to
the lighter generations larger values of new Abelian charges.

(ii) A different approach is to assume that the three generations contain exact replica of the
same states. For each fermion type (same charge and chirality) the gauge invariant kinetic term
is characterized by a U(3) (flavour) symmetry [2]. When this symmetry is broken explicitly by
the Yukawa terms we have the SM. A more interesting idea is that the flavour symmetry is broken
spontaneously (SFSB) by vacuum expectation values (vevs) of ‘Yukawa fields’ with transforma-
tions under the flavour group such that at the Lagrangian level, the flavour symmetry is exact.

The first approach relies on ad hoc assignments of new quantum numbers in order to reproduce
qualitatively the observed mass patterns. The second approach can be considered theoretically more
ambitious (as it relies on less ad hoc assumptions) although it is by far more challenging than the
first one regarding successful model implementations. In order to offer a natural solution to the
Yukawa hierarchy, such models should not rely on a hierarchical arrangement of parameters or on
some tuning between them. Loop-induced hierarchies for example would be plausible [3], but we
have found that this possibility is vetoed [4]. Dynamical mechanisms inducing strong suppression
of some parameters are another possibility which we have instead proved being viable [5].

The idea that quark masses could arise from the minimum of a scalar potential invariant under
a suitable symmetry is rather old, and group theoretical methods to identify the natural extrema of
a ‘Yukawa potential’ were established already in the early seventies [6, 7]. Nowadays the literature
on attempts to explain dynamically the Yukawa couplings (employing different flavour groups and
different flavour-breaking fields) is extensive [8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20].

This contribution is based on three papers [3, 4, 5]. It resumes the main steps (difficulties,
vetoes, mandatory requirements) that lead us to understand the features needed to implement SFSB
in what we think is the best motivated scenarios, which is based on the quark flavour symmetry:
GF = SU(3)Q×SU(3)u×SU(3)d , where Q, (u and d) denote the SU(2)L quark doublets (singlets).
Quarks couple to the Higgs field via the effective operator

−LY = ∑
q=u,d

[
1
Λ

QYq qHq +h.c.
]
, (1.1)
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where Hd = H is the Higgs field (Hu = iσ2H∗), Yu,d are the up- and down-type Yukawa fields,
and Λ is the scale where the effective operators arise. The theoretical challenge is now finding a
GF -invariant scalar potential V (Yq,Z) (where Z denotes generically additional scalars coupled to
Yq in a symmetry invariant way) which can break GF spontaneously and yield a set of vevs 〈Yq〉
reproducing the observed structure of the SM Yukawa couplings.

2. A single Yukawa field: generating a hierarchy

Let us start by considering a single Yukawa multiplet, e.g. Y = Yu, that under the relevant
flavour symmetry GLR = SU(3)L×SU(3)R transforms as (3, 3̄). As a first step, we want to explore
the possibility of generating a Yukawa hierarchy via SFSB of GLR.

2.1 Minimization of the tree level potential

It is convenient to parameterize Y by means of its singular value decomposition:

Y = V †
χ U , χ = diag(u1, u2, u3) , (2.1)

where the matrices V and U are unitary and the entries in χ are real nonnegative. We can write
down three renormalizable invariants with respect to the GLR transformations Y →VL Y V †

R :

T = Tr(YY †) = ∑
i

u2
i , (2.2)

A = Tr
[
Adj(YY †)

]
=

1
2 ∑

i6= j
u2

i u2
j , (2.3)

D = Det(Y ) = eiδ
∏

i
ui ≡ eiδ D , (2.4)

where δ = Arg
[
Det
(
V †U

)]
and D = |D |. The most general potential reads:

V = λ

[
T − m2

2λ

]2

+ λ̃AA+ µ̃ D + µ̃
∗D∗ , (2.5)

and by taking µ̃ = µeiφ the last two terms can be also rewritten as 2 µ cos(φ + δ )D. For the
rest of this section we will neglect the phases of µ and D and assume that both quantities are
real. Formally, one can implement this condition in the scalar potential via a chiral rotation of the
quark fields in eq. (1.1). This is described in detail in [21] (although it was later found that the
solution to the strong CP problem put forth in [21] does not hold [5], the analysis of the relation
between the phase φ + δ chiral rotations and the chiral anomaly remains valid). In eq. (2.5) we
require λ > 0 in order to have a potential bounded from below and m2 > 0 to trigger SSB via
〈T 〉 6= 0. Eqs. (2.3) and (2.4) show that A and D are maximized for the symmetric configuration
〈χ〉s = (us,us,us). This would break GLR to the maximal subgroup Hs = SU(3)L+R. The minimum
value 〈D〉 = 0 is obtained when one entry in 〈χ〉 vanishes, while 〈A〉 = 0 is obtained when two
entries vanish: 〈χ〉h = (0,0,uh) (with uh = m/

√
2λ ). Therefore, if λA > 0 and a specific condition

µ2/m2 < F(λ ,λA) is satisfied (where F(λ ,λA) is a simple algebraic expression of its arguments,
see [3]) the global minimum is obtained for 〈χ〉h. This gives as little group the maximal GF

subgroup Hh = SU(2)L×SU(2)R×U(1) [7].
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2.2 The one loop effective potential

The fact that the tree level potential admits the vacuum configuration 〈χ〉h = (0,0,uh) which is
a good approximation to the quarks Yukawa pattern, is encouraging, and one could hope that some
type of corrections could lift the zeroes to hierarchically suppressed entries. Clearly this would cor-
respond to breaking further the little groups of the tree level vacua. That is, we need to understand if
a stepwise breaking GLR→ Hh→ nothing, of the initial symmetry group, is possible. In [3] it was
shown that by adding to the tree level potential new terms of the form cD µD logD and cA A logA,
with coefficients cD,A < 1, would do exactly this, lifting the two zeroes to nonvanishing but ex-
ponentially suppressed entries. In the same paper it was conjectured that the one loop corrected
effective potential might contain precisely terms of this type. The non trivial task of computing the
effective potential for the scalar multiplet Y was undertaken in [4]. We first worked out the analyti-
cal expression of Veff, and next we carried out a numerical study of its minima. We have found that
the vacuum structure of the tree level minimum remains stable against loop corrections. The reason
for this stability can in fact be understood on the basis of a theorem established by Georgi and Pais
(GP) in the late seventies [22], stating that: stepwise SSB can only occur via perturbative quan-
tum corrections if there are non-Goldstone massless bosons in the tree approximation. Since in
our case all massless modes correspond to Goldstone bosons, the little groups Hs,h cannot undergo
further breaking because of loop effects. (The Coleman-Weinberg model [23] is a well known
example of a tree level symmetry broken by loop effects. This can occur because classical scale
invariance of the scalar potential is assumed, and thus at the tree level all the scalars are massless
non-Goldstone modes. Therefore the occurrence of loop induced breaking is in agreement with the
GP theorem.) In ref. [4] the GP theorem was extended to include also the case of perturbations due
to effective operators involving higher order invariants of Y , and this lead to the conclusion that,
in the absence of tree level non-Goldstone massless modes: no perturbative effect of any kind can
further break the tree level little groups Hs,h and lift the vanishing entries in 〈χ〉. As a side remark,
it should be noticed that the previous result does not mean that one cannot write a polynomial ex-
pression in the invariants which, upon minimization, yields a hierarchical pattern 〈χ〉exp = (ε ′,ε,u)
(ε ′� ε � u) and breaks GF completely. This in fact can be done straightforwardly. For a given
type of quarks, let us denote the experimental value of the invariants as Texp, Aexp, Dexp. Then
the nonnegative polynomial P(Y ) =

(
T −Texp

)2
+ 1

Λ4

(
A−Aexp

)2
+ 1

Λ2

(
D−Dexp

)2 is guaranteed
to have its minimum in 〈χ〉exp [16]. (Of course, with a suitable set of independent invariants, this
can be extended to the full quark sector, so that all quark masses and mixing angles can be trivially
obtained via minimization of a suitable polynomial.) However, expanding P(Y ) and truncating re-
taining only the renormalizable operators, one obtains that the A invariant appears with an overall
negative sign −2

(
Aexp/Λ4

)
A and this implies that the minimum occurs for the symmetric solution

〈χ〉s = (us,us,us). Thus the configuration 〈χ〉exp ∼ (ε ′,ε,u) is not obtained from a perturbation of
the tree level vacuum 〈χ〉h ∼ (0,0,ut), implying that higher order terms dominate over the renor-
malizable ones. Thus, such an approach would result in an incurable loss of predictivity.

2.3 Symmetry breaking via reducible representations

The results of the previous section make clear which way is left open to get a phenomenolog-
ically viable pattern of vevs for the components of the Yukawa field Y . Namely, the flavour sym-
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metry GLR must be completely broken already at the tree level. For this, we need a non-minimal set
of scalar fields in reducible representations of the flavour group. In fact, breaking a symmetry by
means of reducible representations avoids at once the issue of stability of the little groups that are
maximal subgroup of the original symmetry. A minimal enlargement of the scalar sector involves
adding two multiplets, ZL,R transforming respectively in the fundamental of one of the two group
factors SU(3)L× SU(3)R, while being singlets under the other one: ZL = (3,1) and ZR = (1,3) .
Let us write the most general SU(3)L×SU(3)R invariant potential for ZL, ZR and Y = (3, 3̄) as:

V (Y,ZL,ZR) =VI +VA R +VA . (2.6)

VI collects the so called flavour irrelevant terms [5]. These are terms that are invariant under acci-
dental symmetries that are much larger than the flavour symmetry, and thus the values of their vevs
do not depend on any particular flavour configuration. For example T eq. (2.2) is invariant under
SO(18) which is broken down to SO(17) after SFSB. A transformation of this large subgroup can
rotate 〈χ〉s into 〈χ〉h leaving unchanged the “length” of the vev of Y (defined as

√
〈T 〉). Another

example of flavour irrelevant operators is |ZL,R|2 which carries a SO(6) symmetry. All in all, VI

just determines the “length” of the vevs for Y,ZL,ZR, without contributing to determine any specific
flavour direction. Therefore we will omit writing here its explicit form, that can be found in [4].

Those terms in the potential that tend to break the symmetry to the largest maximal little group
(in this case SU(3)L+R with eight generators) are defined as attractive (A ), while terms that tend
to break the symmetry to the smallest maximal little group (in this case SU(2)L×SU(2)R×U(1)
with seven generators) are called repulsive (R). Hermitian monomials can be attractive or repulsive
depending if their (real) couplings are negative or positive, and are included in VA R :

VA R = λAA+gR|Y ZR|2 +gL |Y †ZL|2 , (2.7)

where we have adopted for the modulus square notation the convention |X |2 = X†X . For example
(see section 2.1) the sign of λA determines if the A invariant is attractive or repulsive. Operators
which correspond to non-Hermitian monomials are included in VA :

VA = µ̃D + ν̃Z†
LY ZR +H.c.= 2 µ D cosδ +2ν

∣∣∣Z†
LY ZR

∣∣∣cosφLR , (2.8)

where in the second equality µ = |µ̃| and ν = |ν̃ |. Non-Hermitian monomials are always attractive,
as is the case for D : when the vev 〈D〉 is nonvanishing, minimization drives its phase δ → π

(cosδ =−1). Then the minimum gets lowered for the largest possible value of D, that is obtained
for 〈χ〉s, corresponding to the largest little group Hs = SU(3)L+R. Let us now define

〈Y 〉= vY diag
(
ε
′,ε,y

)
, 〈ZL〉= vL

(
zL,ε

′
L,εL

)
, 〈ZR〉= vR

(
zR,ε

′
R,εR

)
, (2.9)

with ε2+ε ′2+y2 = 1 and analogously for the entries in 〈ZL,R〉. Let us see if a hierarchical solution
ε,ε ′ � y, εL,R,ε

′
L,R � zL,R, can be obtained. VI in eq. (2.6) fixes the ‘lengths’ vY and vL,R, and

vanishes, so we need to consider only the effect of Vε ≡ VA R +VA . For λA,gL,R > 0 VA R is
always positive, and thus it is minimized when it vanishes, which occurs when the vevs of ZL,R are
misaligned with respect to the vev of Y , as for example 〈Y 〉= vY diag(0,0,1), 〈ZL〉= vL (cL,sL,0)
and 〈ZR〉= vR (cR,sR,0) (c2

L,R+s2
L,R = 1). However, such a configuration would also imply VA = 0,

5
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while configurations yielding VA < 0 would result in a lower minimum. We then learn that the
parameters µ and ν appearing in VA can play a crucial role in lifting the vanishing entries. A
simple illustrative example of their action can be given by setting for simplicity vY = vL = vR and
λA = gL = gR. Solving for the extremal conditions ∂Vε/∂ε = ∂Vε/∂ε ′= ∂Vε/∂εL,R = ∂Vε/∂ε ′L,R =

0, and truncating to terms O
(
ε2
)

we obtain a unique solution for the global minimum:

ε =
λA ν vY

3λ 2
A v2

Y −µ2 , ε
′ =

µ

λA vY
ε . (2.10)

At this order, the other parameters vanish (εL,R = ε ′L,R = 0), and the potential minimum is V min
ε =

−ν v3
Y ε . Eq. (2.10) shows that a hierarchy ε ′ ∼ 10−2 ε ∼ 10−4, which would fit well the observed

values of 〈χu 〉, can be obtained by taking ν ∼ µ ∼ 10−2 λA vY .

3. Two Yukawa fields: generating quark mixing

In this section we extend the study of SFSB by including both the u and d sectors. The flavour
symmetry is then the full flavour group GF under which the u- and d-type Yukawa multiplets
transform as: Yu ∼

(
3, 3̄,1

)
and Yd ∼

(
3,1, 3̄

)
.

3.1 Minimization of the potential for Yu and Yd

With just the two multiplets Yu and Yd we can write only one invariant that is not flavour
irrelevant and that couples the two Yukawa fields (for the complete expression for V (Yu,Yd) see [3]):

Tud = Tr(YuY †
u YdY †

d ) = Tr
(

K† χ2
u K χ2

d

)
, (3.1)

where K is a unitary matrix of fields that in terms of the singular value decomposition parameteri-
zation eq. (2.1) is given by K = VuV

†
d . The vev of K describes the mismatch between the two basis

in which 〈Yu〉 and 〈Yd〉 are diagonal, and after ordering 〈χu 〉 and 〈χd 〉 in the same way (e.g. with
increasing size of their entries) we can make the identification 〈K〉 = VCKM. Being a Hermitian
monomial, Tud can be attractive or repulsive depending on the sign of its coupling λud (respectively
negative or positive). At fixed lengths (

√
〈Tu〉,

√
〈Td〉 = const.) when 〈Yu〉 and 〈Yd〉 are “aligned”

(i.e. they are diagonal in the same basis and with the same ordering) the value of 〈Tud〉 is maxi-
mum, while it is minimum when in a given basis they are “anti-aligned” (diagonal but with opposite
ordering). It is then clear that there are only two options to extremize Tud : if its coupling λud is
negative, alignment is selected and we obtain 〈K〉= I. λud > 0 selects instead the anti-aligned con-
figuration, which means that 〈K〉 is anti-diagonal. The first possibility can be considered to give a
reasonable first approximation to VCKM. However, also in this case there is no type of perturbative
correction that can produce departures from an exact 〈K〉= I and generate small mixing angles. A
simple intuitive way to understand this is to notice that with only two “directions” in flavour space
(Yu and Yd) there is just a single relative “angle”, which gets fixed by minimization of the potential.
This implies that alignment or anti-alignment are the only possibilities for extremization.

One additional remark is in order. With a negative coupling (λud < 0) the term in eq. (3.1)
besides aligning 〈Yu〉 and 〈Yd〉 has also another important effect: the naive hierarchical pattern y∼ 1,
ε ∼ ν

vY
, ε ′ ∼ µ

vY
ε that we have derived at the end of section 2.3, see eq. (2.10), gets amplified by the

effect of Tud . Numerically, we find that in the presence of Tud and with λud < 0, µ

v ∼ 10−1|λud | is

6
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enough to generate sufficiently strong Yukawa hierarchies as the ones observed. For an explanation
of how this dynamical enhancement comes about we refer to [5].

3.2 Quark mixing via reducible representations

As we have seen in section 2.3, adding new scalar representations is in any case necessary to
generate hierarchical Yukawa matrices with nonvanishing entries. We will now argue that this can
also cure the troublesome result VCKM = I. The pair of scalar multiplets ZL,R transforming respec-
tively in the fundamental of the SU(3)L,R factors of GLR suffices to generate hierarchical entries for
one Yukawa multiplet. Then, as a first attempt to generate a vev 〈K〉 with a non trivial structure, we
introduce as a minimal number of additional fields, the following three multiplets: ZQ1 ∼ (3,1,1),
Zu ∼ (1,3,1) and Zd ∼ (1,1,3), where in parenthesis we have given the transformation proper-
ties under GF . Therefore we have in total three ‘vectors’ ZQ1 ,Yu and Yd transforming under the
L-handed factor SU(3)Q of GF , while Zu and Zd transform respectively in the fundamental of the
two R-handed factors. The study of the most general tree level potential for these five multiplets
in terms of attractive/repulsive operators is a bit cumbersome, and we refer to section IV of ref. [5]
for details. The result is that while this minimal set suffices for obtaining hierarchical solutions for
both 〈χu〉 and 〈χd〉, only one nontrivial mixing angle (θ23) is generated, which also implies that
there are no sources of CP violation in the ground state for the mixing matrix 〈K〉.

3.3 Mass hierarchies, CKM mixings and CP violation

Generating the other two nonvanishing mixing angles (θ12 and θ13) requires at least one addi-
tional multiplet transforming in the fundamental of SU(3)Q: ZQ2 ∼ (3,1,1). This can be intuitively
understood by observing that four independent “directions” in L-handed flavour space (ZQ1 ,ZQ2 Zu,
Zd) constitute the minimum number required to define three relative “angles”. While the expres-
sion for the full GF invariant potential becomes a bit involved, many terms are flavour irrelevant,
and understanding the dynamical action of the relevant invariants is still a manageable task. This
task has been carried out in [5]. Quite interestingly, we have found that the same field content that
ensures three nonvanishing mixing angles, is also sufficient to ensure that at the potential minimum
the vev 〈K〉 ∼ VCKM contains one CP violating phase. Let us stress, for the seek of clarity, that
in the present case the fact that the potential minimum is CP violating has nothing to do with the
notion of spontaneous CP violation. In fact, in our scenario the scalar potential violates CP from
the start because of the presence of a certain number of physical complex phases (four, to be exact).
The important point thus is that at the minimum there is no restoration of CP symmetry, something
that could have happened if, by some accident, all the field vevs had flown towards real values.

3.4 A numerical example

The final verdict if spontaneous breaking of the flavour symmetry is able to account for the
entire set of observables in the quark sector can eventually be settled only by means of numeri-
cal minimization of the full GF -invariant scalar potential. This issue has been addressed in [5].
However, no attempts to perform multidimensional global fits to the SM observables where carried
out, something that would have required a prohibitive amount of CPU time. The simpler approach
followed in [5] was that of assuming a simple set of values for most of the flavour irrelevant param-
eters and then, by varying the remaining (crucial) ones, attempting to approximate the experimental

7
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values of the observables of the quark sector. Of course, carrying out successfully this procedure
has been rendered feasible by a good understanding of the role of each term in the potential, an
understanding that we have gained by inspection of several partial analytical results. An example
of the type of results that can be obtained is given below. Since we have not reproduced here the
(rather lengthy) expression for the most general GF invariant potential for the Y and Z fields, we
also do not recopy the numerical values of the input parameters. Since it is a quite relevant point
we mention, however, that all parameters have been taken to be O(1), with no hierarchies among
them larger than O(10−1). We have found input values satisfying the above conditions for which
the resulting parameters of the SM quark sector are

〈Yu〉 = vu diag(0.0003,0.009,1.4) , 〈Yd〉= vd diag(0.0007,0.02,1.2) ,

|〈K〉| =

 0.974 0.223 0.027
0.224 0.974 0.042
0.017 0.046 0.999

 , J = 2.9×10−5, (3.2)

with J the Jarskog invariant [24]. From the fact that we have set vd = vu from the start, it follows
that the largest entries in 〈Yu,d〉 are similar size. This does not constitute any real problem: the
value of the b-quark mass can be easily suppressed by means of a U(1) spurion vev, along the lines
described in [3], or by extending the Higgs sector to a two doublets model with 〈Hd〉 � 〈Hu〉.

4. Conclusions

In this contribution we have reported the attempt developed in the three papers [3, 4, 5] to ex-
plain the values of the parameters of the SM quark sector (four mass ratios, three mixing angles and
one CP violating phase) starting from the idea that the complete breaking of the quark flavour sym-
metry can result as the dynamical effect of driving a suitable scalar potential towards its minimum.
We have identified the minimum set of multiplets in simple (fundamental and bifundamental) rep-
resentations of the group needed to break GF → 0, and we have shown that this same set of fields
is also sufficient to generate one weak CP violating phase. Besides the quantitative results, through
this study we have gained important qualitative understandings of various mechanisms that might
underlie some of the most puzzling features of the SM quark sector. We list them in what we think
is their order of importance.

1. K = VCKM ≈ I. The interaction between the two Yukawa fields Yu and Yd tends to generate
an exact alignment of their vevs in flavour space, resulting in VCKM = I [8]. If the interaction is
repulsive (λud > 0) the alignment occurs when the eigenvalues of the two matrices are ordered by
size in an opposite way. When the interaction is attractive (λud < 0) the alignment occurs when
the ordering is the same. This second possibility is the one observed in nature. To generate three
nonvanishing mixing angles, that is to (slightly) misalign Yu and Yd in all flavour directions, at least
two other multiplets transforming under the L-handed factor SU(3)Q are needed. Their presence
will induce perturbation in the exact alignment, but if the Yu-Yd interaction is sufficiently strong, an
approximate form VCKM ≈ I will be maintained.

2. Yukawa hierarchies. Hierarchies between the different entries in 〈Yu〉 and 〈Yd〉 are seeded by
taking for a subset of the dimensional parameters values somewhat smaller than the overall scale

8
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of the vevs: µ,ν ∼ vY/10. This can be justified by the fact that when these parameters are set to
zero, the scalar potential gains some additional U(1) symmetries. The initial (mild) suppression of
some entries in 〈Yu,d〉 can get amplified down to the observed values of the quark mass ratios by
dynamical effects. Hierarchical Yukawa couplings can then be generated without strong hierarchies
in the fundamental parameters.

3. CP violation. Once the flavour symmetry is completely broken, generating the CKM CP vi-
olating phase does not require complicating further the model. The set of scalar multiplets needed
to obtain GF → 0 ensures that several complex phases cannot be removed regardless of field redef-
initions, and this ensures that the scalar potential contains CP violating terms. For generic values
of these phases, a CP violating ground state for V (Yq,Zq,ZQ1,2) is obtained.

Indeed, one could object that in our construction there are many more fundamental parameters
than there are observables. This of course affects its predictivity, and in some respects also its
elegance. We cannot object to such a criticism, but it is worth stressing that the proliferation of
parameters is a result of the usual quantum field theory prescription for building renormalizable
Lagrangians: we have identified the minimum number of multiplets needed to break completely
GF , and next we have simply written down the complete set of renormalizable operators allowed
by the symmetry. After all, as it has been argued e.g. in [25], the apparent lack of simple relations
between the observables of the quark sector might well be due to the fact that, as in our case, they
are determined by a very large number of fundamental parameters.

Direct evidences of the scenario we have been studying might arise from the fact that if the
flavour symmetry is global, then spontaneous symmetry breaking implies the presence of Nambu-
Goldstone bosons that could show up in yet unseen hadron decays or in rare flavour violating
processes. If the flavour symmetry is instead gauged, then to ensure the absence of gauge anomalies
additional fermions must be introduced [15], and their detection could then represent a smoking
gun for this type of models. All this remains, however, a bit speculative, especially because the
theory provides no hint of the scale at which the flavour symmetry gets broken, and very large
scales would suppress most, if not all, types of signatures.
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