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Introduction

Einstein’s equations are generically not integrable. Under some assumptions, the system pos-
sesses integrability properties often revealed by solution-generating techniques. In 1970, Geroch
exhibited in Refs. [1, 2] a method for generating vacuum solutions of Einstein’s equations, gen-
eralizing previous work by Ehlers [3]. The starting point was a four-dimensional manifold M ,
endowed with a metric g and vanishing Ricci tensor. A generic Killing vector ξ was also assumed
for g, with scalar twist ω and norm λ . A coset space S was further constructed as the quotient
of M by the one-parameter group generated by ξ . The core of the proposed method was to set a
one-to-one mapping between S and M , and recast the four-dimensional Einstein’s equations in
terms of the data on S : the metric h on the projected space S orthogonal to ξ , and the scalar
fields λ and ω . Any new triplet (h′,ω ′,λ ′) satisfying that set of equations could be promoted to
another, potentially new four-dimensional vacuum solution g′ with one isometry.

Geroch’s sigma-model is not integrable but exhibits a continuous group of symmetries, the
U-duality group, and allows to map any solution into another. Although this mapping is non-local
amongst the uplifted four-dimensional solutions, it is local at the level of the three-dimensional
data. Indeed, keeping the metric h within the conformal class of fixed λh, new solutions can
be generated as Möbius transformations of τ = ω + iλ : τ ′ = aτ+b/cτ+d with

(
a b
c d

)
in SL(2,R).

In concrete examples such as Schwarzschild–Taub–NUT solutions with mass m and nut charge
n, the compact subgroup of elements

(
cos ψ/2 sin ψ/2

−sin ψ/2 cos ψ/2

)
∈ SO(2) ⊂ SL(2,R) induces rotations of

angle ψ in the parameter space (m,n): m + in→ e−iψ(m + in). Non-compact transformations(
a b
0 1/a

)
∈ N ⊂ SL(2,R) act homothetically: (m,n)→ (m/a, n/a).

The above techniques have been extensively developed over the years for vacuum or elec-
trovacuum solutions (see e.g. [4–6]). In particular, following Ernst [7, 8], Geroch’s method gener-
alizes when 2 commuting Killing vectors are available on (M ,g) and allows to reduce Einstein’s
dynamics to a two-dimensional sigma-model. The latter possesses full affine symmetry1 and is
integrable [9–13] (see also [14, 15] for more references). Further generalizations of the method
have been studied in great detail within supergravity theory, in various dimensions [16–20]. Such
analyses provide an important and complementary perspective with respect to Geroch’s algebraic
solution-generating technique.

Geroch’s approach is more intricate in the presence of a cosmological constant, and only a few
sparse examples were available till recently in the framework of Ernst’s equations [21–23]. Actu-
ally, even though Geroch insisted in starting with a vacuum solution (M ,g), all the requirements
necessary to translate Einstein’s equations to three-dimensional terms remain valid in the more
general case of Einstein spaces: λ and ω are well-defined and together with the coset (S ,h), they
provide a complete characterization of (M ,g). This has led the authors of Ref. [24] to reconsider
the original analysis. Besides the three-dimensional fields (ω,λ ), it is necessary to introduce an
extra field κ playing the rôle of the conformal factor, and study the dynamics of (κ,ω,λ ) in the
sigma-model. Although the action of the SL(2,R) is again well defined, the U-duality group turns
out to be only a subgroup of it, and the benefit for generating new solutions is limited. In particu-
lar, this group does not include the generator which realizes the mapping m+ in→ e−iψ(m+ in).

1This is the algebra customary quoted as Geroch in the literature, whereas it is common to name the finite-
dimensional algebra Ehlers.
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This is unfortunate because a full Schwarzschild Taub–NUT solution does exist on AdS, and it is
legitimate to ask whether this is indeed a manifestation of a hidden symmetry, as for the vacuum
case, that would allow to obtain the nut charge as an image of the mass parameter.

The advent of gauge/gravity holographic correspondence allows to recast the above questions
regarding Einstein spaces in a slightly different manner. Originally formulated at the microscopic
level, holography has been extended macroscopically as a relationship between gravity plus matter
in asymptotically (locally) anti-de Sitter spaces and some phenomenological boundary conformal
field theory in one dimension less. The latter is usually a macroscopic quantum state, which might
– but needs not to – be in the hydrodynamic regime. This is how fluids emerge in holography.

A bulk Einstein space (M ,g), delivers a boundary space B with boundary metric gbry. and
boundary energy–momentum tensor T. The two holographic pieces of data for pure-gravity bulk
dynamics are thus gbry. and T. These data allow in turn to reconstruct the bulk Einstein space using
e.g. the Fefferman–Graham series expansion [25, 26]. For arbitrary boundary data, this series
expansion is generically non-resummable and the bulk solution is not exact.

It is possible to set up integrability requirements, which if obeyed by the boundary data, ensure
the resummability of the expansion at hand, and an exact Einstein space at the end [28, 30, 31].
The proposed set of integrability requirements can be viewed as a kind of integrable holographic
reduction of Einstein’s equations, alternative to Geroch’s sigma model. It turns out that this set
of integrability requirements leaves some freedom to map (gbry.,T) onto (g′bry.,T

′). Hence, the
reconstructed (M ,g′) from (g′bry.,T

′) leads to a possibly new exact Einstein space. Schematically,
a holography-based solution-generating technique works as follows:

(M ,g)−→
r→∞

(B,gbry.,T) →Uhol.
(B,g′bry.,T

′) −→
exact reconstruction

(M ,g′),

where r is the holographic radial coordinate and Uhol. the holographic U-duality group. Both
(gbry.,T) and (g′bry.,T

′) are boundary data satisfying the set of integrability requirements. In the
present scheme, holography provides an alternative solution-generating technique for Einstein
spaces.

What makes it possible for revealing integrability conditions for boundary data and further
discovering the seed for a holographic U-duality group, is the hydrodynamic interpretation of the
boundary state. The purpose of this note is to report on recent progress [27–31] (see also Ref. [32])
made in using holographic fluids for understanding integrable corners of Einstein’s equations. Prior
to that and in the spirit of a comprehensive presentation, we also report on the generalization of
Geroch’s method in Einstein spaces, as was exposed in [24]. This will actually be our starting
point, reviewed in Sec. 1. We will then move in Sec. 2 to the integrability properties in the
framework of the derivative expansion, which is an alternative to the Fefferman–Graham expansion,
inspired by the black-brane paradigm and proposed in [33–35]. The emergence of the holographic
U-duality transformations will also be discussed, in general as well as for a particular class of
integrable boundary data, where the rôle of the transformation as a rotation in the mass–nut plane
is transparent. This shows that the holographic U-duality group fills indeed the gap left by the
Geroch group in Einstein spaces.
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1. Following Geroch2

1.1 From four to three dimensions

We assume M a four-dimensional manifold endowed with a Lorentzian-signature metric g =

gabdxadxb, and ξ a Killing field. The latter has norm λ = ‖ξ‖2 and twist one-form3 w =−2iξ ?dξ .
The Killing one-form ξ obeys identically

?d?dξ = 2iξ Ric, (1.1)

where Ric is the four-dimensional Ricci tensor. Assuming the metric be Einstein

Ric = Λg, (1.2)

Eq. (1.1) reads:
d?dξ = 2Λ?ξ . (1.3)

It is straightforward to show that dw = 0, which allows to define the scalar twist locally as

w = dω. (1.4)

We can define the space S as a quotient of M with respect to the action of the one-parameter
group generated by ξ . As ξ may not be hypersurface-orthogonal (which would imply zero twist),
this coset space needs not be a subspace of M . There is a natural metric h on S induced by g of
M as

hab = gab−
ξaξb

λ
, (1.5)

which defines the projector onto S is

hb
a = δ

b
a −

ξ bξa

λ
. (1.6)

For the metric (1.5), the volume form and the fully antisymmetric tensor read:

Volh =
1√
−λ

iξ Volg⇔ ηabc =
−1√
−λ

ηabcdξ
d , (1.7)

where we assumed for concreteness λ < 0 so that the Killing vector ξ is timelike and h is spatial
(the whole reduction procedure goes smoothly through when λ is positive).

Following [1], let us quote some basic features of the geometrical relationship between M

and S . There is a natural one-to-one correspondence between tensors on S and tensors T on M ,
transverse and invariant with respect to the Killing flow i.e. that satisfy iξ T = 0 and Lξ T = 0.
Assume now a tensor T on S . It is easy to show that the covariant derivative D defined following

2We reproduce in this section results borrowed from [24].
3Here “?” is the four-dimensional Hodge duality performed with ηabcd =

√
−detgεabcd (ε0123 = 1). We also recall

that for ζ a vector, iζ is the contraction with ζ .
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this correspondence,

DcT b1...bq
a1...ap = h`chm1

a1
. . .hmp

ap hb1
n1
. . .hbq

nq∇`T
n1...nq

b1...bp
(1.8)

with ∇ the Levi–Civita derivative on M , coincides with the unique Levi–Civita covariant derivative
on S . This provides a Riemann tensor on S in terms of the Riemann tensor of M :

Rabcd = h p
[ahq

b]h
r
[chs

d]

(
Rpqrs +

2
λ
(∇pξq∇rξs +∇pξr∇qξs)

)
(1.9)

(the calligraphic letters refer to S tensors). These equations are more general than Gauss–Codazzi
equations, since ξ needs not be hypersurface orthogonal.

The existence of a Killing vector ξ on (M ,g) allows us to recast the dynamics of g in terms of
(h,ω,λ ), which can all be regarded as fields on S . For that, one extracts the S -Ricci tensor Rab

from (1.9) and further determines the S -Laplacians of λ and ω . The final equations are, under the
assumption (1.2),

Rab = 1
2λ 2 (DaωDbω−habD

cωDcω)+ 1
2λ
DaDbλ − 1

4λ 2DaλDbλ +Λhab,

D2λ = 1
2λ

(DcλDcλ −2DcωDcω)−2λΛ,

D2ω = 3
2λ
DcλDcω.

(1.10)

Equations (1.10) provide in principle new solutions (h′,ω ′,λ ′), which can be promoted to a
new metric g′ with symmetry ξ ′ following the procedure described in Sec. 1.2. Most importantly,
these equations can be recast in a useful manner by introducing a three-dimensional reference
metric ĥ, defined as

hab =
κ

λ
ĥab. (1.11)

The dilaton-like field κ captures one of the degrees of freedom carried by the metric h, and in-
heritates its dynamics from the latter’s. This is useful for probing mini-superspace solutions with
frozen ĥ, because it allows for one gravity degree of freedom to remain dynamical, together with
ω and λ . It should be emphasized here that the original Geroch’s reference metric was defined
as h̃ab = λhab. Freezing h̃ removes all h degrees of freedom, leaving only ω and λ as dynamical
fields. In the presence of a cosmological constant, the scalar degree of freedom κ is crucial for
the system to capture e.g. mass and nut parameters simultaneously. This is explicitly shown when
performing the mini-superspace analysis of the integrability properties of (1.10), assuming that the
space S is topologically R×S2, and the metric ĥ of the form dŝ2 = dσ2 +dΩ2, where dΩ2 is the
two-dimensional σ -independent piece. Details can be found in the original publication [24].

Introducing τ = ω + iλ together with (1.11), Eqs. (1.10) read:

R̂ab = − 2
(τ−τ̄)2 D̂(aτ D̂b)τ̄ +

1
2κ

(
D̂aD̂bκ + ĥabD̂

cD̂cκ

)
− 1

4κ2

(
3D̂aκD̂bκ + ĥabD̂

c
κD̂cκ

)
+4iΛ κ

τ−τ̄
ĥab, (1.12)

D̂2
τ = 2

τ−τ̄
D̂c

τD̂cτ− 1
2κ
D̂c

κD̂cτ−2iΛκ, (1.13)

where all hatted quantities refer to the metric ĥ. These equations describe the dynamics of the fields

5
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(ĥ,κ,τ), the equation for κ being the trace of (1.12):

D̂2
κ = 3

4κ
D̂c

κD̂cκ + κ

(τ−τ̄)2 D̂
c
τ D̂cτ̄−6iΛ κ2

τ−τ̄
+ κ

2 R̂. (1.14)

Equations (1.12), (1.13) and (1.14) can be obtained by extremizing, with respect to ĥab,τ and
κ , the action S =

∫
S d3x

√
ĥL with Lagrangian density

L =−
√
−κ

(
D̂aκD̂aκ

2κ2 +2
D̂aτD̂aτ̄

(τ− τ̄)2 + R̂−4iΛ
κ

τ− τ̄

)
. (1.15)

As usual, not all components of Eqs. (1.12) are evolution equations: there are also the Hamiltonian
and momentum constraints. The sigma-model action at hand describes a system of “matter” fields
κ,ω and λ , which define a three-dimensional target space with metric

ds2
target =

√
−κ

(
−dκ2

κ2 +
dω2 +dλ 2

λ 2

)
, (1.16)

interacting through a “matter” potential,

V =
√
−κ

(
R̂−2Λ

κ

λ

)
. (1.17)

It is customary to introduce in this potential the three-dimensional gravity contribution
√
−κR̂, as

ultimately, in a mini-superspace analysis, the field ĥ is frozen.

1.2 From three to four dimensions

We would like to remind here how any new solution (h′,ω ′,λ ′) of Geroch’s Eqs. (1.10), can be
uplifted without ambiguity to a new metric g′ with symmetry ξ ′ on the four-dimensional manifold
M . The procedure is based on the following observation: the two-form defined on S as4

F′ =
1

(−λ ′)3/2
?3

h′ dω
′ (1.18)

is closed and thus, locally exact
F′ = dη

′. (1.19)

The field η ′, a priori defined on S , can be promoted to a field on M by adding the necessary
exact piece such that its normalization is

iξ η
′ = 1, (1.20)

and this defines a new Killing field on M

ξ
′ = η

′
λ
′. (1.21)

4Here ?3
h′ stands for the three-dimensional Hodge-dual with respect to h′.

6
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The new four-dimensional metric finally reads:

g′ab = h′ab +
ξ ′aξ ′b
λ ′

. (1.22)

1.3 Integrability

The target-space metric (1.16) is conformal to R×H2, which has an R× SL(2,R) isometry
group generated by

ζ =
1
2

κ∂κ , (1.23)

and
ξ+ = ∂ω , ξ− =

(
λ

2−ω
2)

∂ω −2ωλ∂λ , ξ2 = ω∂ω +λ∂λ , (1.24)

obeying
[ξ+,ξ−] =−2ξ2, [ξ+,ξ2] = ξ+, [ξ2,ξ−] = ξ−. (1.25)

For the metric (1.16), ζ is a conformal Killing field, whereas the ξ s remain Killing, and generate the
SL(2,R) Geroch (sometimes called Ehlers) group. The quadratic Casimir of the latter is generated
by the Killing tensor Ξ =−κ/λ 2

(
dω2 +dλ 2

)
.

For non-vanishing Λ, the potential V breaks part of the SL(2,R) symmetry, and only ξ+

leaves it invariant. This allows for a single conservation law. Actually, another one turns out to be
available for ξ2 thanks to the Hamiltonian constraint (see details in [24]).

The system described by (1.15) is not generically integrable. The Ehlers–Geroch SL(2,R)
group is not large enough to account for the infinite number of conserved charges, necessary for
integrability. It allows nevertheless to map any solution onto another one, and is thus solution-
generating. The situation is more interesting when the original Einstein space possesses two com-
muting Killing vectors. In this case, the three-dimensional sigma model can be further reduced to
two dimensions [7, 8], with potentially remarkable integrability properties.

We can summarize the various situations as follows:

Λ = 0 Any solution (ĥ,κ,τ) provides another solution (ĥ,κ,τ ′) with

τ
′ =

aτ +b
cτ +d

,

(
a b
c d

)
∈ SL(2,R). (1.26)

In the presence of an extra commuting Killing vector, the corresponding two-dimensional sigma
model is invariant under a full ŝl(2,R) affine algebra. The latter guarantees integrability [9–13].
Actually, the two-Killing vacuum solutions are known and classified according to their Petrov type:
the Plebański–Demiański family is type-D and the Kundt solutions are type-N or type-III (see e.g.
[36]).

Λ 6= 0 In this case, the situation is more intricate. Firstly, only a subgroup N ⊂ SL(2,R) is
solution-generating [24]: from the Einstein space (ĥ,κ,τ) with Λ, we obtain another Einstein space

7
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(ĥ,κ,τ ′) with5

Λ
′ = a2

Λ and τ
′ = a(aτ +b) ,

(
a b
0 1/a

)
∈ N ⊂ SL(2,R). (1.27)

Secondly, assuming an extra commuting Killing vector, the obtained two-dimensional sigma model
has never been proven to be integrable or to posses an affine symmetry. We nevertheless expected
it to be, as it is admitted that all two-Killing Einstein spaces with cosmological constant are known
(again Plebański–Demiański and Kundt spaces).

In conclusion, although for vanishing Λ the Geroch approach provides the appropriate frame-
work for discussing solution-generating techniques and integrability, it seems that it fails to achieve
that for Λ 6= 0, despite the common available formalism and the close relationship amongst known
Ricci-flat and Einstein solutions. This has led to reconsider the latter case from a holographic
perspective.

2. Holographic integrability

2.1 The derivative expansion and the resummed Einstein space

For pure gravity dynamics, holography is equivalent to a Hamiltonian evolution. It requires
two pieces of fundamental holographic data: the boundary metric and the boundary energy–momentum
tensor. Any set of such data, allow in principle to reconstruct an Einstein bulk geometry, captured
either in the Fefferman–Graham or in the derivative expansions.

In holographic terms, integrability of Einstein’s equations translates into the resummability
of the series expansion, which reconstructs the bulk from boundary data. In this perspective, the
natural question in the search of integrable sectors for Einstein’s equations is therefore as follows:
given a class of boundary metrics, what are the conditions it should satisfy, and which energy–
momentum tensor should it be accompanied with in order for an exact dual bulk Einstein space
to exist? A more difficult companion question is whether the integrability conditions also ensure
regularity.

From the perspective of physics, and putting aside the questions regarding regularity, these
issues have been thoroughly investigated in Refs. [27–31], and we will here review the results.
From a mathematical viewpoint the related filling-in problem was studied long ago, and has been
a guide in our approach. A round three-sphere is a positive-curvature, maximally symmetric Ein-
stein space with SU(2)× SU(2) isometry. A hyperbolic four-space H4 is a negative-curvature,
maximally symmetric Einstein space, which is a foliation over round three-spheres. In this sense,
the round three-sphere is filled-in with H4, the latter being the only regular metric filling-in this
three-dimensional space.

The natural question to ask in view of the above is how to fill-in the more general Berger
sphere S3, which is a homogeneous but non-isotropic deformation of the round sphere. LeBrun
studied the filling-in problem in general terms [38], and showed that an analytic three-metric can
be regularly filled-in by a four-dimensional Einstein space that has self-dual (or anti-self-dual)

5The potential (1.17) is indeed invariant under the ω b-shift generated by ξ+ (see (1.24)); it is also invariant under
ξ2 (parameter a) provided Λ gets transformed along with λ = Imτ .

8
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Weyl tensor, i.e. by a quaternionic space. In modern holographic words, LeBrun’s result states
that requiring regularity makes the boundary metric a sufficient piece of data for reconstructing
the bulk. Regularity translates into conformal self-duality, which effectively reduces by half the
independent Cauchy data of the problem.

From LeBrun’s filling-in problem we learn that integrability conditions involve the structure
of the Weyl tensor, and are closely related to regularity conditions. In spacetimes with Lorentzian
signature, Weyl self-duality cannot be the answer, as this would trivialize the geometry, leading to
conformally flat spacetimes. As we will see, however, the Weyl tensor remains the central object in
integrability, perceived as the resummability of an expansion. Whether our integrability conditions
also guarantee regularity, remains an open question.

In the subsequent analysis, we will be using the derivative expansion. The latter assumes the
existence of a null geodesic congruence in the bulk, defining tubes that extend from the boundary
inwards. On the boundary, this congruence translates into a timelike congruence, and the afore-
mentioned derivative series expansion is built on increasing derivative order of this field.

Weyl covariance is the guideline for the reconstruction of spacetime based on the derivative
expansion [33–35]: the bulk geometry should be insensitive to a conformal rescaling of the bound-
ary metric ds2

bry.→ ds2
bry./B2. Covariantization with respect to rescalings requires to introduce a Weyl

connection one-form:
A = a− Θ

2
u, (2.1)

where u is tangent to the timelike normalized (uµuµ = −1) congruence and a is its acceleration.
The Weyl connection transforms as A→ A− dlnB. Ordinary covariant derivatives ∇ are thus
traded for Weyl-covariant ones D = ∇+ θ A with θ the conformal weight of the tensor under
consideration.

In the present analysis, we will be interested in situations where the boundary congruence u is
shearless. Vanishing shear simplifies considerably the reconstruction of the asymptotically locally
AdS bulk geometry because it reduces the available Weyl-invariant terms. As a consequence,
at each order of Du, the terms compatible with Weyl covariance of the bulk metric are nicely
organized. Even though we cannot write them all at arbitrary order, the structure of the first orders
suggest that resummation, whenever possible, should lead to the following [27–31, 33, 34]:

ds2
res. =−2u(dr+ rA)+ r2k2ds2

bry. +
Σ

k2 +
u2

ρ2

(
3Tµνuµuν

kκ
r+

Cµνuµηνρσ ωρσ

2k6

)
. (2.2)

Here r the radial coordinate whose dependence is explicit, xµ are the three boundary coordinates
extended to the bulk, on which depend implicitly the various functions, κ = 3k/8πG and k is a
constant related to the bulk cosmological constant as Λ = −3k2. We have furthermore introduced
the following objects:

• the conserved boundary energy–momentum tensor T = Tµνdxµdxν , appearing via the bound-
ary energy density

ε(x) = Tµνuµuν ; (2.3)

• the vorticity ω of the boundary timelike congruence (ω = 1/2(du+u∧ a) = 1/2 ωµν dxµ ∧
dxν ) together with its dual vector of components quµ = ηµνσ ωνσ ;

9
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• the boundary metric ds2
bry. = gµνdxµdxν and its conserved Cotton tensor6 C = Cµνdxµdxν

for which it is customary to introduce

c(x) =Cµνuµuν ; (2.4)

• the boundary tensor

Σ = Σµνdxµdxν =−2uDνω
ν

µdxµ −ω
λ

µ ω
λν

dxµdxν −u2R

2
(2.5)

with

Dνω
ν

µ = ∇νω
ν

µ , (2.6)

R = R+4∇µAµ −2AµAµ ; (2.7)

• the function ρ , defined as

ρ
2 = r2 +

1
2k4 ωµνω

µν = r2 +
q2

4k4 , (2.8)

which performs the resummation as the derivative expansion is manifestly organized in pow-
ers of q2 = 2ωµνωµν .

Under a conformal rescaling of the boundary metric, the tensor Σ is invariant, while C→B C, and
at the same time T→B T, u→ u/B (velocity one-form) and ω → ω/B.

The important issue regarding the resummed bulk metric (2.2) is to set up the boundary con-
ditions under which this metric is an exact Einstein space. This has been discussed in detail in the
already quoted literature and we will report our findings in Sec. 2.2. Meanwhile, we should pause
and mention an important result: whenever the resummed metric ds2

res. is Einstein, it is Petrov alge-
braically special. The proof of this statement7 is based on the shear-free nature of the congruence
u. The absence of shear for this boundary timelike congruence guarantees that the corresponding
null bulk congruence ∂r, which is geodesic, is also shear-free. Thanks to the Goldberg–Sachs the-
orem and its generalizations, a reconstructed Einstein bulk geometry (2.2) is algebraically special
i.e. of Petrov type II, III, D, N or O. Furthermore, the bulk congruence ∂r provides a principal null
direction.

We would like to insist on the rôle played by the absence of shear for the boundary congruence.
Not only this assumption allows to discard the large number of Weyl-covariant tensors available
when the shear is non-vanishing, which would have probably spoiled any resummation attempt; but
it also selects the algebraically special geometries, known to be related with integrability properties.
One can safely say that the absence of shear is intimately related with the resummability of the
derivative expansion. Although we cannot exclude that some exact Einstein type I space might be
successfully reconstructed from boundary data, or that no exact resummation involves a congruence
with shear, this looks very unlikely in view of the above.

6Reminder: the components of the Cotton tensor are Cµν = ηµρσ ∇ρ

(
Rν

σ − R
4 δ ν

σ

)
, with ηµρσ given by a formula

similar to the four-dimensional one of footnote 3 with ε012 = 1.
7The interested reader can find all the technicalities of that proof in App. A of Ref. [31].
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2.2 The resummability conditions

We will list in this section all boundary ingredients and conditions needed for reaching holo-
graphically exact bulk Einstein spacetimes when using the derivative expansion, organized around
the derivatives of the boundary congruence u. This expansion assumes small derivatives, small
curvature, and small higher-derivative curvature tensors for the boundary metric. This limitation
is irrelevant for us since we are ultimately interested in resumming the series, allowing even for
non-perturbative (i.e. non-hydrodynamic) contributions.

At the perturbative level, the fluid interpretation is applicable and the boundary timelike con-
gruence is identified with the boundary fluid velocity field. This is how the holographic fluid
emerges. Beyond the perturbative framework, however, the fluid interpretation is not faithful due to
the presence of non-hydrodynamic modes in the boundary energy–momentum tensor. In that case,
the boundary timelike congruence refers only to the hydrodynamic part of the energy–momentum
tensor and this raises an aside, although important question in our analysis: given the boundary data
ds2

bry. and T, what is the congruence u that will organize the expansion? This congruence cannot be
read off from the energy–momentum tensor, since the non-hydrodynamic pieces of the latter blur
the fluid interpretation. It turns out that this question has a very simple answer, which comes as
part of the resummability ansatz and requirements. These are organized as follows:

1. The boundary metric.

We consider a three-dimensional boundary spacetime, equipped with a metric ds2
bry. = gµνdxµdxν

(µ,ν , . . . = 0,1,2). Given a generic three-dimensional metric, there is a unique way to ex-
press it as a fibration over a conformally flat two-dimensional base:8

ds2
bry. =−Ω

2(dt−b)2 +
2

k2P2 dζ dζ̄ , (2.9)

with P and Ω arbitrary real functions of (t,ζ , ζ̄ ), and

b = B(t,ζ , ζ̄ )dζ + B̄(t,ζ , ζ̄ )dζ̄ . (2.10)

2. The boundary timelike shear-free congruence.

In three-dimensional geometries, there is basically a unique timelike, normalized and shear-
less congruence.9 When the metric is of the form (2.9), this congruence is precisely the
comoving one:

u =−Ω(dt−b). (2.11)

This defines our fluid congruence.

3. The boundary reference tensors.

As quoted in Sec. 2.1, the resummed bulk metric (2.2), when Einstein, is Petrov algebraically
special. The Petrov classification is obtained from the eigenvalue equation for the Weyl

8See e.g. [37] and App. A of Ref. [31]. In the presence of isometries, expression (2.9) may not be unique. Notice
that we could set Ω = 1, without spoiling the generality – as we are interested in the conformal class.

9This statement is not true in the presence of isometries, where more shearless congruences may exist. In these
cases, the distinct congruences are equivalent.

11



P
o
S
(
P
L
A
N
C
K
 
2
0
1
5
)
1
0
4

Geroch group for Einstein spaces and holographic integrability P. Marios Petropoulos

tensor. In particular, the Weyl tensor and its dual can be combined in a pair of complex-
conjugate (self-dual and anti-self-dual) tensors. Each of these tensors has two pairs of bivec-
tor indices, which can be used to deliver a complex two-index tensor. Its components are
naturally packaged inside a complex symmetric 3×3 matrix Q with zero trace (see e.g. [39]
for this construction). This matrix encompasses the ten independent real components of the
Weyl tensor and the associated eigenvalue equation determines the Petrov type.

For a general Einstein space, the leading-order (1/r3) coefficient S± in the Fefferman–Graham
expansion of the complex Weyl tensor Q± exhibits a specific combination of the components
of the boundary Cotton and energy–momentum tensors [40, 41]. Indeed, performing a simi-
larity transformation with P = diag(±i,−1,1), we obtain T± =−PS±P−1 with components

T±µν = Tµν ±
iκ
3k3Cµν . (2.12)

We refer to T± as the reference energy–momentum tensors because they play the rôle of a
complex-conjugate pair of fictitious conserved boundary sources, always accompanying the
boundary geometry. These tensors must be of a canonical form because the bulk resummed
metric is algebraically special. A canonical form is dictated by the Segre classification (see
e.g. [42]): it can be either perfect-fluid, pure-radiation or pure-matter.

4. The resummability conditions.

The reference tensors given in Eq. (2.12) are by construction symmetric, traceless and con-
served:

∇ ·T± = 0. (2.13)

Choosing a specific form for these tensors, and assuming a boundary metric ds2
bry., we are

led to two conditions. The first, provides a set of equations that the boundary metric must
satisfy:

C =
3k3

κ
ImT+. (2.14)

The second delivers the boundary energy–momentum tensor it should be accompanied with
for an exact bulk ascendent spacetime to exist:

T = ReT+. (2.15)

The above presentation of the boundary ingredients and requirements can thus be summarized
as follows: a generic boundary metric accompanied with canonical reference tensors T± (perfect-
fluid, pure-matter or pure-radiation), satisfying Eqs. (2.13) and (2.14), is expected, together with
(2.15), to guarantee (2.2) be Einstein. Scanning over canonical forms for T± amounts to exploring
all Petrov classes. The Segre type of the reference tensors determines precisely the Petrov type of
the four-dimensional bulk metric and establishes a one-to-one map between the bulk Petrov type
and the boundary data.10

10Some care must be taken when working with T± instead of S±, because the eigenvalues are equal but not nec-
essarily their eigenvectors. This means that one cannot determine the Petrov type unambiguously if considering the
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Many examples illustrate the proposed pattern for producing exact four-dimensional alge-
braically special Einstein spaces from purely boundary considerations. These can be found in
[30, 31], and include families such as Robinson–Trautman, Plebański–Demiański or Kundt spaces,
for which the various Petrov classes are designed from the boundary data.

In conclusion, Eqs. (2.13), (2.14) and (2.15) appear as a boundary translation of Einstein’s
equations, in the integrable sector of algebraically special geometries.

2.3 A solution-generating transformation

Equations (2.13), (2.14) and (2.15) are actually the holographic alternative of Geroch’s three-
dimensional sigma model encoded in (1.15). The logic behind this statement is as follows.

The starting point for the holographic determination of exact Einstein spaces is an ansatz for
the boundary metric ds2

bry. (falling necessarily in the general class (2.9), but possibly expressed
in a different way). The second step is the choice of a canonical form for T+. At this stage the
conservation of T+ (2.13), together with the equation for the Cotton (2.14), allow to determine the
actual boundary metric in conjunction with the adequate conserved reference tensors. From the
latter, in a third step, one extracts the appropriate boundary energy–momentum tensor using (2.15).
This whole procedure is exclusively boundary-based, and no other equation needs to be solved.
The last step is the uplift to four dimensions, performed using (2.2) with the boundary data at hand.

In Geroch’s programme, one would start with a reference metric ĥ and determine (κ,τ) by
solving Eqs. (1.13) and (1.14) together with the constraints stemming out of Eqs. (1.12). These
three-dimensional data, namely (ĥ,κ,τ) equivalent to (h,ω,λ ), would then be promoted to a four-
dimensional Einstein space, following the pattern described in Sec. 1.2.

This similarity between the two approaches can be pushed further, at the level of solution-
generating methods. For Geroch, the procedure was recalled in Sec. 1.3, and captured in (1.27)
for Einstein spaces. In the holographic approach, we observe that the conservation condition of
the reference tensor, Eq. (2.13), whose key rôle in the integrability has been emphasized above, is
invariant under the transformation

T+→ zT+, T−→ z̄T−, z ∈ C. (2.16)

Any solution of the boundary integrability equations (2.13), (2.14) and (2.15), can thus be mapped
onto another one, potentially new. The relevance of this statement resides in the complex nature of
the parameter z. Indeed, the transformation (2.16) induces a drastic modification of the boundary
data: the energy–momentum and the Cotton tensors transform as

T→ 1
2
(
zT++ z̄T−

)
, C→ 3k3

2iκ

(
zT+− z̄T−

)
, (2.17)

and the latter alters substantially the boundary metric. The uplifted four-dimensional space (2.2) is
transformed accordingly into another Einstein geometry.

It is important to stress the local nature of the transformation (2.16) at the level of the reference
tensors T±. This transformation is also local for the actual energy–momentum tensor T, but non-

eigenvalue equation for T±. The ambiguities occur between type II (III) and type D (N), since these types have the same
degeneracy of eigenvalues. This was noticed e.g. in the Robinson–Trautman metric studied in [30].
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local for the boundary and for the resummed bulk metrics. This latter statement is not surprising, as
the transformation at hand acts ultimately on the bulk Weyl tensor, mixing its self-dual and anti-self-
dual components Q±, the boundary image of which being T± (more precisely S± =−P−1T±P).

Before closing this chapter, we would like to elaborate on a specific canonical form for the
boundary reference tensors T±, namely the perfect-fluid form, which accounts for Petrov-D and
Petrov-II bulk Einstein spaces (see Refs. [30, 31]):

T±pf = p±(x)
(

3
(
u±
)2

+ds2
bry.

)
. (2.18)

In this expression, x stands for the boundary coordinates (t,ζ , ζ̄ ) used in the generic form (2.9),
and the two reference velocities are11

u+ = u+
α+

P2 dζ , u− = u+
α−

P2 dζ̄ (2.19)

with functions α±(x) adjusted in conjunction with the pressure fields p±(x) for ensuring the con-
servation of T± i.e. Euler’s equations. In 3 spacetime dimensions these read:{

2u±(ln p±)+3Θ± = 0

u±(ln p±)u±+3ln p±+3a± = 0
(2.20)

with u±( f ) = uµ

±∂µ f . Combining these equations, we obtain:

A±+dln p
1/3
± = 0, (2.21)

where the Weyl connection A± is expressed in terms of the velocity u±, the acceleration a± and the
expansion Θ± as in (2.1). Equation (2.21) is integrable if the Weyl connection A± is closed (hence
locally exact). If dA± 6= 0 the “fluid” flowing on u± is not perfect. If A± vanishes, it is perfect and
isobar.

The reference pressures p±(x) can be expressed in terms of ε(x) and c(x) defined in Eqs. (2.3)
and (2.4), by computing T±µνuµuν , where uµ are the components of the hydrodynamic congruence
(2.11):

T±µνuµuν = 2p±(x) = ε(x)± i
κ

3k3 c(x). (2.22)

The invariance of (2.13) under (2.16), is recast here as the invariance of (2.21) under

p+(x)→ zp+(x), p−(x)→ z̄p−(x), z ∈ C, (2.23)

or equivalently (
ε

κ

3k3 c

)
→ |z|

(
cosψ −sinψ

sinψ cosψ

)(
ε

κ

3k3 c

)
(2.24)

with z = |z|(cosψ + isinψ). This is a rescaling combined with a rotation in the plane of boundary

11These are the most general ones: adding an extra leg along the missing direction, and adjusting the overall scale
for keeping the norm to −1 amounts to a combination of a diffeomorphism and a Weyl transformation.
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data (ε, κ

3k3 c).
In the bulk, the transformation (2.24) affects directly the Ψ2 component of the Weyl tensor.

Indeed, the boundary congruence u on which T± is projected in (2.22), is lifted in the bulk onto a
principal null direction of the Weyl (see discussion in Sec. 2.1), and enters the definition of Ψ2. At
large r the latter behaves as

Ψ2 ≈−
3

2kκr3

(
ε(x)+

iκ
3k3 c(x)

)
. (2.25)

Owing to the fact that the real part of Ψ2 is generically associated with the bulk mass, whereas
the imaginary part corresponds to the bulk nut (or rotation), the solution-generating transformation
(2.24) amounts to a rotation in the (m,n) plane, besides an overall rescaling. As recalled in the
introduction, this is precisely what Geroch’s SL(2,R) does in Ricci-flat spaces, and fails to achieve
for Einstein geometries (see Sec. 1.3 and Ref. [24]).

2.4 A concrete example12

The complete Petrov-D, two-Killing set of Einstein spaces is known as Plebański–Demiański
family[43] (see also [36]). It can be obtained from purely boundary considerations, following the
method described in Secs. 2.1 and 2.2.

Although appropriate for expressing the resummed bulk metric (2.2), the form (2.9) for the
boundary metric is not convenient for implementing the two-Killing symmetry requirement. We
will therefore parameterize differently the boundary metric, adapting two coordinates τ and ϕ to
the two commuting Killing fields, and letting χ be the third one. Up to an arbitrary conformal
factor, which plays no rôle in holographic issues, such a metric can be expressed in terms of two
arbitrary functions F(χ) and G(χ) as follows:

ds2 =−F−χ4G
F +G

dϕ
2 +

G−χ4F
F +G

dτ
2 +2χ

2 dϕ dτ +
dχ2

FG
. (2.26)

As our aim is to build Petrov-D bulk metrics, the reference energy–momentum tensors are
chosen of perfect-fluid form, which is Segre type D.13 We need for this an ansatz for two complex-
conjugate, normalized congruences with exact Weyl connection. Thanks to the presence of the two
Killing fields, it is easy to design such congruences by normalizing a linear combination of these
fields:

u± =
∂τ ± i∂ϕ

χ2∓ i
↔ u± =

±i
F +G

(
G
(
dτ +χ

2dϕ
)
± iF

(
χ

2dτ−dϕ
))

. (2.27)

These are non-expanding and accelerating with exact Weyl connections

A± = dln(χ2∓ i). (2.28)

The corresponding perfect-fluid reference tensors, of the form (2.18), are thus conserved with a

12The interested reader can find all details for the holographic reconstruction of the Plebański–Demiański family in
Ref. [31].

13Similarly, we can proceed with a more general ansatz and recover two-Killing Einstein spaces other than Petrov-D,
such as Kundt spaces.
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χ-dependent pressure obtained by integrating Eq. (2.21) with (2.28):

p±(χ) =−
κk
3

m∓ in
(χ2∓ i)3 . (2.29)

The parameters m and n are arbitrary and survive all the way up to the bulk metric, where they
appear as the mass and the nut charge in appropriate normalizations. On the boundary, they emerge
as first integrals of (2.13), resulting from the symmetry (2.16), or equivalently (2.23). Under the
latter transformations with z = |z|(cosψ + isinψ), these parameters are mapped as follows:(

m
n

)
→ |z|

(
cosψ sinψ

−sinψ cosψ

)(
m
n

)
. (2.30)

As advertised in Sec. 2.3, this amounts to a rotation in the (m,n) plane, accompanied with an
overall rescaling. This is a non-local transformation in the bulk Einstein space, which will be
presented below. Notice that for ψ = −π/2 and |z|= 1, the transformation at hand is a gravitational
duality map, known to exchange the mass and the nut charge: (m,n)→ (−n,m). This is settled
more generally in Ricci-flat spaces, where the duality maps the Riemann tensor to its dual. As
for the full continuous U-duality group, this Z2 subgroup acts non-locally on the four-dimensional
metric. The holographic language seems to be the appropriate one for handling these duality issues
in the presence of a cosmological constant.

The Cotton tensor can be computed for the general boundary ansatz (2.26). The resummability
condition (2.14) is then imposed using the reference tensors (2.18), and it results in third-order
differential equations for the functions F(χ) and G(χ). These equations turn out to be tractable,
and we find:

F(χ) =
R̂(χ)

χ4 +1
=

1
χ4 +1

[
(k2− `)χ4−2nχ

3 + εχ
2−2mχ + `

]
, (2.31)

G(χ) =
Q̂(χ)

χ4 +1
=

1
χ4 +1

[
`χ

4 +2nχ
3− εχ

2 +2mχ + k2− `
]
, (2.32)

obeying
F(χ)+G(χ) = k2 (2.33)

with `,ε extra arbitrary integration constants.
As stressed in the general presentation of Sec. 2.2, the hydrodynamic congruence u is part of

the resummation ansatz. Once the boundary metric is set in the form (2.9), the velocity field used
in the resummation formula (2.2) should be taken to be (2.11), which is shear-free. It is possible to
turn (2.41) onto (2.9) by trading (τ,χ,ϕ) for (t,ζ , ζ̄ ) as14

t +
ζ + ζ̄

k
√

2
=
∫

dχ

(
k2χ2

FG(χ4 +1)
− 1

Fχ2

)
, (2.34)

ζ = − k√
2

(
τ + iϕ− k2

∫
dχ

χ2− i
FG(χ4 +1)

)
. (2.35)

14Equation (2.33) is used, even though F and G appear separately in several expressions.
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In the new frame, the two Killing vector fields read:

∂τ = ∂t −
k√
2

(
∂ζ +∂

ζ̄

)
, ∂ϕ =−i

k√
2

(
∂ζ −∂

ζ̄

)
, (2.36)

and ∂t is not a Killing. Similarly, the complex-conjugate congruences (2.27) are recast in the form
(2.19) with appropriate α± = α±(χ). It is worth reminding that these congruences are actually
the most general ones, and this is why the choice at hand allows to reconstruct at the end the most
general type-D, two-Killing Einstein space.

The boundary metric has now the form (2.9), and all functions Ω, P and B depend only on
χ i.e. on the specific combination dictated by the isometries, t + ζ+ζ̄

k
√

2
. Expressed in the frame

(dτ,dχ,dϕ), the hydrodynamic congruence u given in (2.11) reads:

u = dϕ−χ
2dτ +

dχ

F
. (2.37)

Given the hydrodynamic congruence, it is possible to determine the longitudinal projections of the
energy–momentum and Cotton tensors, as displayed in Eqs. (2.3) and (2.4). We find:

ε(χ) = −2kκ

3
mχ2(χ4−3)+n(3χ4−1)

(1+χ4)3 , (2.38)

c(χ) = 2k4 nχ2(χ4−3)−m(3χ4−1)
(1+χ4)3 . (2.39)

At this stage we can perform the resummation of the derivative expansion associated with the
above boundary data, using Eq. (2.2). Various intermediate ingredients are computed with Eqs.
(2.5), (2.7) and (2.8). It is wise to abandon the analogue of Eddington–Finkelstein coordinates
(τ,χ,ϕ,r) in use, and bring the metric at hand in a more familiar form. This is achieved with the
following coordinate transformation:

τ = τ̂ +
∫ q̂2 dq̂

R̂(q̂)
−
∫ r̂2 dr̂

R̂(r̂)

χ = q̂

ϕ = ϕ̂−
∫ dq̂

R̂(q̂)
+
∫ dr̂

R̂(r̂)

r = 1
r̂−q̂ +

q̂3

q̂4+1 ,

(2.40)

where the function R̂ is displayed in (2.31). Despite the complicated expression of the original
metric, thanks to the polynomial structure of R̂ and to Eqs. (2.31), (2.32) and (2.33), the metric
(2.2) becomes unexpectedly simple in the new coordinates (τ̂, q̂, ϕ̂, r̂):

ds2
bry. =

1
(q̂− r̂)2

(
−

R̂(r̂)
(
dϕ̂− q̂2dτ̂

)2

1+(r̂q̂)2 +
Q̂(q̂)

(
dτ̂ + r̂2dϕ̂

)2

1+(r̂q̂)2

+
1+(r̂q̂)2

Q̂(q̂)
dq̂2 +

1+(r̂q̂)2

R̂(r̂)
dr̂2
)
. (2.41)

This is the Plebański–Demiański geometry with zero electric and magnetic charges [43]. It is
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Einstein and Petrov-D, and its unique Weyl invariant is

Ψ2 = (m− in)
(

q̂− r̂
i− r̂q̂

)3

. (2.42)

At large r, the latter behaves as advertised in (2.25) with ε and c displayed in (2.38) and (2.39).

Conclusion

The Geroch group emerges as a symmetry of the three-dimensional sigma model obtained
when reducing four-dimensional vacuum Einstein’s equations along a Killing congruence. This
group is at the heart of remarkable integrability properties, and acting on a solution, it provides
another solution. The whole scheme is extendable to higher dimensions, where it leads to the
U-duality groups, very popular in supergravity and superstring compactifications.

When considering Einstein spaces instead of Ricci-flat geometries, the Geroch group still ex-
ists, but not all of its generators produce solutions. It is therefore unclear whether it accounts for the
integrability properties, which are still present though in some corners of the phase space. An alter-
native perspective for understanding these properties and setting up solution-generating techniques
is made available within holography.

In holography, expansions such as the Fefferman–Graham, or the more physical hydrodynamic
derivative expansion are resummable under appropriate conditions on the boundary data, which are
the boundary metric and the boundary energy–momentum tensor. Displaying these conditions and
exploring their invariance has been the core of this presentation.

The analysis we performed is rewarding, as integrability conditions do exist and are invariant
under an operation that produces non-trivial transformations on the boundary data, as well as on the
bulk geometry. The whole procedure articulates around the complex-conjugate reference tensors
T±. These are

• of canonical Segre form, because they are the holographic image of the bulk Weyl tensor (up
to a similarity transformation), itself algebraically special due to the assumption of shear-free
hydrodynamic congruence u;

• conserved, ∇ ·T± = 0, and thus freely transforming under T+→ zT+, T−→ z̄T− with con-
stant z ∈ C.

The integrability conditions (2.13), (2.14) and (2.15) are the boundary manifestation of Einstein
bulk equations in some integrable sector. They are the analogue of Geroch’s three-dimensional
sigma model (1.15), and their invariance quoted previously replaces the N ⊂ SL(2,R) invariance
group of (1.15). This invariance appears as a boundary-controlled holographic U-duality, ulti-
mately mixing the self-dual and anti-self-dual components Q± of the bulk Weyl tensor. The fact
that this mixing is achieved with the help of the Cotton and the energy–momentum tensor is not
surprising. What is remarkable, is that integrability is preserved, producing a genuine solution-
generating pattern, non-locally relating Einstein spaces. The Weyl gravitational duality is a Z2

subgroup of the holographic U-duality symmetry.
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Understanding the deeper relationship that may exist between the Geroch and the holographic
symmetries, setting a bridge between Fefferman–Graham and hydrodynamic derivative expansions,
and extending the whole scheme to higher dimensions are related and challenging questions that
deserve further investigation.
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