
P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
1
1

Optimization of Integrity Measurement Algorithm
Based on Multi-thread Pipeline Paralleling

Yinhao Wang1

State Key Laboratory of Mathematical Engineering and Advanced Computing
Zhengzhou, Henan, 450002,China
E-mail: xdwyh1990@163.com

Zheng Shan, Chao Fan, Fei Xue
State Key Laboratory of Mathematical Engineering and Advanced Computing
Zhengzhou, Henan, 450002,China

With the continuous development of trusted computing, the integrity measurement has gradually
been practical; but the popularization and application of the existing measurement tools are still
restricted by their own measurement algorithm’s performance. Considering the insufficient of
existing measurement tools’ performance, we propose an optimization method of integrity
measurement algorithm based on multi-thread and pipeline paralleling. We analyze shortage of
the existing measurement tools and provide an optimized method based on multi-thread
technology and pipeline paralleling technology. Experiments show that this method can
significantly improve the performance of SHA-1 and is also applicable to a variety of hash
algorithms.

CENet2015
12-13 September 2015
Shanghai, China

1Speaker

 Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
1
1

Optimization of Integrity Measurement Algorithm Yinhao Wang

1. Introduction

With the development of the era and the progress of science, the computing systems have
been gradually moved towards the pattern of ubiquitous computing; however, the computer will
be faced with a series of security threats such as malicious code attacks, illegal access to
information and unlawful destruction of data and systems. Malicious code attacks aiming at the
user’s private information have become the largest security threat [1]. In order to effectively
address these security threats, the trusted computing arises at the historic moment and has
become a hot research topic in the field of information security. The integrity measurement
mechanism, as the significant technology of trusted platform, builds a trust chain of trusted
computing platform so as to ensure the credibility of computing platform. According to the level
of protection, the integrity measurement can be divided into two types: the hardware level and
the software level [2].

The addition of hardware module can improve the signature algorithms’ performance,
however it not only increases the cost of system, but also can’t adapt to all computing platform.

The integrity measurement tools in the software level mostly use hash algorithm as the
integrity measurement algorithm, but the algorithm seriously affects the performance of
computer when doing the run-time measurement; therefore, we propose the optimization of
integrity measurement algorithm based on the multi-thread pipeline paralleling in this paper.

2. Related Work and Contribution of this Paper

With the development of integrity measurement technology, a series of integrity
measurement tools have come out in software level such as TAMU [3], Hobgoblin [4] and
Tripwire [5]; but they have the same problem, the performance bottleneck; besides, the
measurement algorithm seriously affects the performance of measurement tools, thus the
bottleneck affects the promotion and application of measurement tools as well.

Study shows which measurement method is used by the key factors influencing the
performance of trusted computing platform. Measurement method includes three elements: the
measurement time, the measurement objects and the hierarchy where measurement is
implemented [6]. The measurement time refers to the moment of measurement; the
measurement objects refer to the manifestation of measured entity’s certain status in the system
and the hierarchy of implementing measurement indicates which measures taken by us as to the
measurement objects. In terms of study of measurement method, proposed a method to measure
the integrity of the operating system kernel[7]. The measurement process is divided into three
stages and the paper selects appropriate measurement time and the measurement objects to
realize the integrity measurement of the operating system kernel and proofs the security with
formal proof method, while it does nothing about the key hierarchy where measurement is
implemented. PEDIAMA makes use of embedded strategy to bind the strategy to the
measurement objects [8]. This architecture can save the cost of query and maintenance, while
improving the efficiency of executing the measurement framework; nevertheless, the calculation
process of measurement algorithm has to be optimized.

In conclusion, these existing tools’ measurement algorithms mostly need just a single
execution, but it cannot meet the demands in the environment that computer needs higher
security level. Under this circumstance, it needs do frequent measurement for the system, which
can bring serious impact on computer performance. In order to maintain the security of the
computer and guarantee the performance of computer, we put forward a kind of integrity
measurement algorithm based on multi-thread and parallel optimization by introducing the
multi-thread technology and the pipeline paralleling technology. Finally, we’ve optimized the
algorithm.

2

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
1
1

Optimization of Integrity Measurement Algorithm Yinhao Wang

3. Pipeline Paralleling Design of Integrity Measurement Algorithm

This section firstly describes the existing measurement algorithm, and then introduces how
to realize the design of parallel optimization with related technologies.

3.1Hash Algorithm Overview

Algorithm 1：integrity measurement algorthm

Input：Archive

Output：Hash

1 Begin

2 Toread=m;Readsize=m;Init_hash

3 while(Readsize == ToRead)do

4 Readsize= read(byte[m], ToRead)

5 Init_hash=update(byte[m], Readsize, Init_hash)

6 endwhile

7 End

Figure 1. Algorithm Description

We use hash algorithm as the measurement algorithm generating data extracts for integrity
measurement and describe the measurement algorithm in Fig. 1.

Archive is the target data to be measured, and get its hash value. Firstly, the algorithm
uniformly slices Archive for the size of m; then reads the block of data into the buffer byte[m] in
turn, according to the initialization hash value Init_hash which calculates the hash value of the
block of data in the buffer; later this result serves as the initialization hash value for the next
loop calculation until Archive is completely processed; the algorithm calculates the hash value
of Archive that is Init_hash after the last loop.

3.2 Concurrent Design of Measurement Algorithm

The measurement algorithm can be paralleled by introducing multi-thread technology and
pipeline paralleling technology just as it shows in Fig. 1. The multi-thread can obtain less costs
when they are created , make full use of multi-core processors; however, the technology brings
large synchronous load and scheduling overhead as well as some other problems such as
deadlock, competition and priority inversion, etc[9]. The pipeline paralleling technology assigns
each task of loops to different threads with each thread executing pipelining to obtain
parallelism[10]; and the data-dependence among loops is maintained in some synchronous way.

The parallel implementation of the algorithm designed in this paper is showed in Fig. 2.
We divide the measurement algorithm into two threads parallel execution, the read thread and
the update thread. We firstly set the fixed-size buffer array as sharing space of such two threads;
at meanwhile, we initialize the count signal for synchronization between threads; then we create
the Read thread and the Update thread. The target data is uniformly written into the buffer array
by the Read thread by means of data pre-fetching [11]; at meanwhile, the data that has been
sequentially written into the buffer array will be processed by Update thread. When the data is
written into buffer by Read thread until the buffer is full, the count signal nread also
accumulates unceasingly; when the update thread sequentially processes the data, the update
thread won’t stop the data processing until the buffer is empty. In this way, we’ve realized the
thread synchronization. Fig. 3 shows the description of the parallel algorithm:

3

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
1
1

Optimization of Integrity Measurement Algorithm Yinhao Wang

Begin

Apply for fixed-
size array

Initialization
count signal

Creat Read、
Update thread

Determine whether
the buffer is full

Determine whether
the buffer is empty

Read the data
into the buffer

NO

Processing data
in the buffer

NO

Count signal
nread+1

Count signal
nupdate+1

pthread_join pthread_join

End

usleep（1）

YES YES

rthread uthread

Figure 2: Parallel Flowchart

Algorithm 2: parallel algorithm

Input: Archive

Output: Hash

1 Begin

2 Toread=m;Readsize=m;nread=nupdate=0;Init_hash

3 /*Read rthread*/

4 while(Readsize == ToRead)do

5 if((nread+1)%n==nupdate) then usleep(1)

6 endif

7 Readsize= read(byte[m], ToRead)

8 nread=(nread+1)% n

9 endwhile

10 /*Update uthread*/

11 while(Readsize== ToRead)do

12 if(nupdate==nread) then usleep(1)

13 endif

14 Init_hash=update(byte[m], Readsize, Init_hash)

15 nupdate=(nupdate+1)% n

16 endwhile

17 End

Algorithm 2: parallel algorithm

Input: Archive

Output : Hash

1 Begin

2 Toread=m;Readsize=m;nread=nupdate=0;Init_hash

3 /*Read rthread*/

4 while(Readsize == ToRead)do

5 if((nread+1)%n==nupdate) then usleep(1)

6 endif

7 Readsize= read(byte[m], ToRead)

8 nread=(nread+1)% n

9 endwhile

10 /*Update uthread*/

11 while(Readsize== ToRead)do

12 if(nupdate==nread) then usleep(1)

13 endif

14 Init_hash=update(byte[m], Readsize, Init_hash)

15 nupdate=(nupdate+1)% n

16 endwhile

17 End

Figure 3: Parallel Algorithm Description

3.3 Performance Analysis of Parallel Algorithms

According to Amdahl’s law, the algorithm’s speedup is:

 (,)
1 (1)

p
S p f

p f
=

+ - (3.1)

p presents the number of physical threads those execute calculating, f refers to the
proportion that the serialized execution part accounts in the total workload.

Algorithm 1 shows that there is data dependence between loops in the computation section
of the measurement algorithm, namely, the serial components of the measurement algorithm.
We assume that the system’s I/O rate is r ss f m= () , the calculating rate of the measurement

algorithm is us per second. According to Formula (3.1) the speedup of Algorithm 2 is:

⇒

⇒ (,)
1 (1) (())th

u u s

p
S p f

p s s f m
=

+ - +g (3.2)

rp is the number of Read thread, up is the number of the update thread, the existing data

dependence results is 1=up .
As to Formula (3.2), we put forword that the theoretical speedup of Algorithm 2 is:

1

(,)
1 (())

r
th r

r u u s

p
S p f

p s s f m

+
=

+ +g (3.3)

When considering the synchronization overhead, the actual speedup is:

0

1
(,)

1 (())
r

ac r

r u u s

p
S p f

p s s f m T T

+
=

+ + +g (3.4)

In which, 0T refers to addition overhead of the algorithm which includes communication,
synchronization and idle time, etc. T is the total overhead of Algorithm 1.

Compared with Algorithm 1, Algorithm 2 increases the number of instructions and
increases the scheduling overhead, synchronization overhead and the buffer size, but it reduces
the frequent accessing to the shared buffer and hides the operations of memory accessing,
finally it improves the efficiency of measurement algorithm.

4

(,)
1 (1)th

p
S p f

p f
=

+ -

(,)
1 (1) () [()]th

u u r

p
S p f

p s t s s t
=

+ - +g g g

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
1
1

Optimization of Integrity Measurement Algorithm Yinhao Wang

The main factors affecting the expandability of algorithm involve: serial component of
program; the system overhead includes communication, synchronization, idle time and load
imbalance.

The proportion that the serialized part of the algorithm accounts in the total workload is:
 u u sf s s f m= +(()) (3.5)

According to Formula (3.5), we can adjust f by adjusting the pipeline granularity.
Overhead 0T increases with the increasing of the number of threads, increasing workload

can offset part of overhead that is produced by the increasing number of threads.
There is only an update thread in the algorithm which leads to non-uniform task allocation.
In summary, Algorithm 2 obtains expandability, but its expandability is restricted by

unbalanced load.

4. Experiment and Results Analysis

4.1Quantification of Factors Affecting Algorithm Performance

We assume that the size of target file is S, the block size is m, the overhead is rT that Read

thread writes one block into the buffer, the overhead is uT that Update thread processes one

block in the buffer, the total workload of Algorithm 1 is totalT , the total workload of Algorithm 2

is parallelT .

The overhead that read thread writes one block into the buffer is:

 r(,) ()r r r sT f m s m s m f m= = = (4.1)

The overhead that update thread processes one block in the buffer is:

 (,)u u u uT f m s m s= = (4.2)

Additional overhead of Algorithm 2 is:

 0 parallel

u

S
T T

s
= - (4.3)

4.2 Experiment

We use Sugon Tiankuo I420-G10 server as the testing platform, the processor is Intel Xeon
E5-2407 with four cores, each core’s main frequency is 2.2GHz, its memory is 16.0GB, here the
platform is configured with the operating system of Redhat Enterprise 5 and the versions of the
operating system’s kernel is 2.6.32. The testing files respectively are 10MB, 20MB, 30MB……
80MB, 90MB, 100M.

We take SHA-1 as the testing algorithm. Firstly, we test the performance of the original
algorithm; then we test the performance of the algorithm modified according to Fig. 3 did the
test for the efficiency of reading and writing by selecting different size of m, its conclusion is:
when m equals to the size of file system’s block, we relatively achieve higher efficiency of
reading and writing; at meanwhile, totalT is smaller[12] ; thus we decide that m equals to 4KB,
the testing results are shown in table1 and the coordinate Fig. 4. According to Formula (4.1),

(4,2): 82. 04 108= gus (byte/s); = = 92. 04() 108gr ss f m (byte/s); then according Formula(3.3):

theoretical speedup is: S
th
 ≈1.83

5

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
1
1

Optimization of Integrity Measurement Algorithm Yinhao Wang

S(MB)
10 20 30 40 50 60 70 80 90 100

rT (μs) 2 2 2 3 3 2 2 2 3 3

uT (μs) 20 22 21 20 21 19 20 19 20 21

Table1: The Test of System I/O Rate and Algorithm’s Rate

Figure 4: I/O Rate and Algorithm’s Rate Figure 5: Parallel Test Pattern

We show the original algorithm’s overhead and the parallel algorithm’s overhead in Table
2. With Formula (4.2), (4.3): the actual speedup of algorithm is Sac≈1.72.

S(MB)

T(μs)
10 20 30 40 50 60 70 80 90 100

t ot alT 58537 115313 181456 233564 298243 351582 407712 467338 523281 597413

par al l elT 57517 114531 173745 225072 283818 330495 391863 433820 500271 561525

0T 6317 1891 12465 20272 14756 38655 33463 44700 39471 23925

Table 2: Parallel Test Results

4.3 Algorithm Security and Performance

In view of the existing measurement models considering less about the measurement
algorithm’s optimization and seriously affecting the computer performance, we analyze the
original measurement algorithm and uniformly slice the target data in this paper. Then we take
advantage of multi-thread’s feature that different threads of the same process share the address
space and divide the measurement process into two threads; at meanwhile, we make use of
pipeline paralleling technology to parallel processing fetch part and calculate part of algorithm.
Finally, we realize memory accessing hidden and improve algorithm’s performance. As the
operation process of the algorithm itself is still running sequentially, we get the correct
measurement results. We guarantee unidirectional and collision resistance of the improved
algorithm. With the introduction of the multi-thread technology, we’ve effectively avoided the
occurrence of the deadlock by setting the appropriate synchronization signals and ensured the
correctness of the algorithm.

Factors mainly affect the computer performance from three aspects: CPU, memory and
costs of program. On the basis of the constant development of multi-core technology today, we
take full advantage of characteristics of the multi-core architecture by introducing multi-thread
technology and realize the effective utilization of resources; we set the length of buffer for

6

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
1
1

Optimization of Integrity Measurement Algorithm Yinhao Wang

n=100, doing like this which occupies smaller cache. In conclusion, we have improved the
overall performance of algorithm.

Since the majority of hash algorithms themselves lack parallelism, this paper mainly
processes the pretreatment process of algorithm in a parallel manner. Finally, this optimization
method is also applicable to the CRC32, MD5, SM3, HAVAL, etc.

5. Conclusion

In this paper, considering the integrity measurement algorithm in the trusted computing
which affects computer performance, we proposed a method of the optimization of integrity
measurement algorithm based on multi-thread and pipeline paralleling. Firstly, we process the
pretreatment process of algorithm in a parallel manner by dividing I/O and calculating into two
threads, then we select the appropriate block size to obtain better rate of reading and writing;
finally we’ve realize the parallelism of algorithm.

References

[1] Feng Dengguo,Qin Yu, and Wang Dan. Research on Trusted Computing Technology[J]. Journal
of Computer Research and Development, 48(8):1342-1349(2011)(In Chinese).

[2] Song Ningnan. Research on the Integrition Protection of Data Stored on Hard Disk[D].
Shanghai Jiao Tong University, Shanghai ,(2009)(In Chinese).

[3] David R. Safford, Douglas Lee Schales, David K. Hess. The TAMU security package: An
ongoing response to internet intruders in an academic environment[C]//Proc of the 4th Usenix
UNIX Security Symposium.USENIX Association Berkeley, CA, USA :91-118(1993).

[4] Scott Leadly, Kenneth Rich, Mark Sirota. Hobgoblin: A File and Directory
Auditor[C]//Proceedings of the Fifth Large Installation Systems Administration Conference. LISA V
proceedings :199-207(1991).

[5] Gene H. Kim, Eugene H. Spafford. The design and implementation of tripwire: A file system
integrity checker,CSD-TR-93-071[R]. [s.1.]:Purdue University:18-29(1993).

[6] Liu Ziwen,Feng Dengguo. TPM-based dynamic integrity measurement architecture[J]. Journal
of Electronics & Information Technology,32(4) : 874-877(2010)(In Chinese).

[7] Li Yu, Zhao Yong, and Lin Li. Method of Trusted Measrement for Operation System Kernel[J].
Journal of Chinese Computer Systems, 34(5):997-1002(2013)(In Chinese).

[8] Deng Rui, Chen Zuoning. Policy embedded dynamic integrity active measurement
architecture[J]. Application Research of Computers, 30(1): 261-264(2013)(In Chinese).

[9] David R. Butenhof. Programming With POSIX Threads[M]. Addison-Wesley
Professional.Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA ,pp.112-114:(1997).

[10] Liu Xiaoxian, Zhao Rongcai, Ding Rui. Pipelining granularity optimization algorithm based on
loop tiling[J]. Journal of Computer Applications, 33(8):2171-2176(2013)(In Chinese).

[11] Chen Wei, Du Lingxia, and Chen Hong. Optimization Strategies of Data Processing Algorithms
under Multi-Core Architecture[J]. Journal of Frontiers of Computer Science and
Technology,5(12):1057-1075(2011).

[12] Li Mengyu. Research on Efficiency of I/O and Standard I/O Reading-writing[J]. Software
Guide,9(6):5-7(2010).

7

	Yinhao Wang1
	1. Introduction
	2. Related Work and Contribution of this Paper
	3. Pipeline Paralleling Design of Integrity Measurement Algorithm
	3.1Hash Algorithm Overview
	3.2 Concurrent Design of Measurement Algorithm
	3.3 Performance Analysis of Parallel Algorithms
	4. Experiment and Results Analysis
	4.1Quantification of Factors Affecting Algorithm Performance
	4.2 Experiment
	4.3 Algorithm Security and Performance
	5. Conclusion
	References

