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Sparse decomposition algorithm can be implemented to classify high dimensional data without
dimension reduction. Empirical examinations have shown that the classification accuracy of the
hyperspectral  data can be significantly improved based on sparse representation framework.
However, the classification accuracy of hyperspectral data is reduced greatly if the quantity of
samples is too small. This paper represents an attempt to fill the gap represented by the absence
of  the  lower  bound  of  labeled  sample  quantity  of  sparse  representations  in  supervised
classification task, in order to focus future analyses towards the most relevant aspects of image
classification accuracy and data labeling cost. Based on the boundary conditions of the unique
solution  of  sparse  representation,  the  relationship  between  the  classification  accuracy  of
hyperspectral data and the quantity of labeled samples is analyzed theoretically in this paper.
The correlation curves of the sample quantity and the classification accuracy is figured with the
Kennedy Space Center (KSC) hyperspectral data.
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1.  Introduction

The  paradox  of  high  dimension  of  hyperspectral  data  is  that,  in  one  hand,  many
classification methods are not appropriate for dealing with high dimensional data, so dimension
reduction  becomes  a  main  approach.  On  the  other  hand,  high  dimension  means  high
information. If dimension reduction methods are implemented, the valuable information will be
lost.

Many classification  algorithms  have  been  implemented  to  classify hyperspectral  data.
Support Vector Machine (SVM) is a classical algorithm, but it is sensitive to the kernel function.
HSVM (Hierarchical SVM) is the improvement of the SVM which combine the Max-cut tree
and SVM together in order to enhance the classification accuracy [1]. Dictionary learning of
sparse representation can obtain better classification accuracy [2]. However, dictionary learning
is time consuming.

Sparse decomposition algorithm is a fast and effective framework and can be implemented
to  classify high  dimensional  data.  The  framework has  the  advantage  that  it  does  not  need
dimension reduction, model selection and dictionary training. Each test sample can be sparsely
represented with only a few non-zero decomposition coefficients by a few training samples of
an over-complete dictionary which are constructed by training samples directly. According to
the approximation error, test samples can be categorized to the corresponding classes. Several
researchers have improved the classification accuracy of hyperspectral  data based on sparse
representation framework [3-5].

Empirical examinations have shown that  the accuracy of hyperspectral classification is
reduced greatly if  the  quantity of  labeled  samples  is  too  small.  However,  identifying  more
labeled samples will make the cost rise. To get the lower bound of the sample quantity and
analyze the relationship between the quantity of labeled samples and classification accuracy, we
deduce a formula which is the relationship between the residual error of sparse representation
and the number of dictionary atoms. Then through empirical data, the correlation curve between
the number of labeled samples and classification accuracy is figured.

The  rest  of  paper  is  organized  as  follows.  In  the  second  section,  we  introduce  the
theoretical analysis of the relationship between the number of labeled samples and classification
accuracy. In the third section, we analyze and show the experimental results. Finally, the fourth
section concludes this paper.

2.Theoretical Analysis

In  this  section,  we  introduce  the  theoretical  analysis  of  the  relationship  between  the
number of labeled samples and classification accuracy.

 2.1 Sparse Representation Algorithm

We can construct a set of dictionaries according to different categories. Each dictionary
gets  the  labeled  samples  of  the  same  category  from hyperspectral  data  to  form the  over-

complete dictionary. And let D
c 
=[d

1 
, d

2 
,…, d

M
](D ϵ RN*M) denotes the dictionary of cth category.

According  to  the  theory  of  sparse  representation,  each  test  sample  can  be  sparsely
represented by a few training samples of an over-complete dictionary with only a few non-zero
decomposition coefficients. We can get sparse decomposition coefficient according to formula
(2.1).

2

2 1
ˆ ( ) arg min cf f D

a
a a l a= - +                                            (2.1)

The above formula is an l1-regularized least squares problem. Where [ ]1 2, ,
T

Ma a a a= L  is

the coefficient of sparse representation. Regularization parameter λ is used to balance the data
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reconstruction error and sparsity. The threshold of parameter λ is selected according to empirical
value.

 Then the test sample  f is categorized to the corresponding classes according to formula
(2.2).

( ) ( )2
ˆmin minc cc c

R f f D a= -                                                  (2.2)

Where  ( )cR f  is the residual to reconstruct f by training samples in the category  c. The

smaller the value ( )cR f  is, the higher the possibility of   f  belongs to the category of cth.

2.2 Coherent

The coherent coefficient μ is a character of dictionary. Its value equals to the maximum of
inner product between two distinct atoms in the dictionary [6].

 μ := max
i ≠ j

 |<d
i 
, d

j
>|        s.t.  i, j ϵ [1,… ,M]                                    (2.3)

Generally, 0< μ <1. If  µ has a very small value, we say that the redundant dictionary is
incoherent, and obviously, the coherent coefficient of an orthogonal basis equals zero. When
μ=1,  then  the  dictionary  contains  at  least  two  identical  atoms  [7].  Furthermore,  in  finite
dimension space of  N, the coherence of a concatenate dictionary of two orthonormal bases is

[6]. For general redundant dictionary, a lower bound of coherence coefficient is [8] 
                                                         

(2.4)

Where M is the number of dictionary atoms, N is the dimensionality of data sample.

2.3 Recovery and Convergence of MP

Basis pursuit  (BP),Matching pursuit  (MP) and its  variants are the classic algorithm of
sparse representation. For the Exact Recovery Condition of BP and OMP (Orthogonal matching
pursuit), J.A.Tropp has given a unified sufficient condition [4]:

( )11
1

2
m m -< +                                                  (2.5).

As  long  as  m which  is  the  number  of  nonzero  entries  of  the  coefficients  of  sparse
representation satisfies above formula (2.5), OMP and BP both recover every superposition of m

atoms from cD .

In most cases, the signal or image can only be expressed by linear combination of some
atoms  in  the  actual  dictionary.  For  MP algorithm,  the  approximation  performance  can  be
described as follows [9]:

Theorem: Let{ }nf be a sequence of approximants to f ϵ H where ind  is the corresponding

atoms selected through MP. Let

( )11
1

4
m m -< +                                                   (2.6),

and  f f
m 

= ∑ 
i ϵ Im 

α
i
d

i
 be a best m approximant to  f  from D , i.e.

║f f
m
 − f ║= σ

m
( f ) := inf {║f − D

I 
α║, card ( I ) <= m , α ϵ CI }            (2.7),

then, there is an number  Nm  such that
the error after  N m  steps satisfies

                                               (2.8)

3

1 Nm >=
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M N

N M
m

-
>=

-
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mN mf f ms- <= +
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during the first N m  steps MP picks up atoms from the best m-term approximant: i
n 
ϵ I

m
 ;

if 2 2
13 /m ms s< , then

                                          (2.9)

2.4 Monotonicity Analysis of Residual Error

From the formula (2.6)  and (2.8),  we can get  a  new inequality about  the  relationship

between 
mNf f-   and coherent coefficient μ.

 12
mNf f m -- < +                                                 (2.10)

From the formula (2.4) and (2.10), we can derive the following inequality between the
number of dictionary atoms and the residual error of sparse approximate:

( 1)
2

mN m

N M
f f

M N
s

-
- < +

-
                                        (2.11)

The dimension of dictionary is unchanged, so, in inequality (2.11), N can be considered as
a constant.

Then inequality (2.11) can be written as

( 1)
2

mN m

N N
f f N

M N
s

-
- < + +

-
                                       (2.12)

So,  there  exist  an  λ
m
ϵ  (0,1].  

mNf f-  will  decrease  with  the  increase  of  independent

variable M. 

( 1)
2

mN m m

N N
f f N

M N
l s

-
- = + +

-
                                     (2.13)

By analyzing the monotonicity of equality (2.13), we can find that variable 
mNf f-  will

decrease with the  increase of independent  variable  M.  The classification criterion of sparse

representation method is measured by
mNf f- . In another word, the smaller the residual error

mNf f-  is, the higher the classification accuracy is. When the number of atoms of dictionary

increases, the residual error will decreases gradually, and the classification accuracy will rise, so
classification accuracy is positively correlated with the number of atoms. Because the atoms of
dictionary are labeled training samples, so the classification accuracy is positively correlated
with the number of the labeled samples.

 3. Experimental Analysis and Conclusion

KSC hyperspectral data is used in our experiment. The results of our experiment advocate
that the number of labeled samples is positively correlated with classification accuracy.  The
number of labeled samples plays a critical role on classified accuracy. 

3.1 Data set 

The specific information of hyperspectral data that employed in experiment includes the
following.
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The  hyperspectral  image  data  was  acquired  by  the  National  Aeronautics  and  Space
Administration (NASA) Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) instrument.
AVIRIS acquired image data over the Kennedy Space Center (KSC), Florida, on March 23,
1996. The data has 224 bands and the center wavelengths is from 400~2500nm. After removing
water absorption and low signal-to-noise (SNR) bands, 176 bands were selected for the analysis.
The hyperspectral data contains 13 typical classes of land cover and 5211 sample points. The
detail of the data set is tabulated in table 1.

Class Class name No.samples

1 Scrub 761(14.6%)

2 Willow swamp 243(4.66%)

3 Cabbage palm hammnck 256(4.92%)

4 Cabbage palm/oak hammnck 252(4.84%)

5 Slash pine 161(3.07%)

6 Oak/broadleaf hammock 229(4.38%)

7 Hardwood swamp 105(2.0%)

8 Graminoid marsh 431(8.27%)

9 Spartina marsh 520(9.99%)

10 Cattail marsh 404(7.76%)

11 Salt marsh 419(8.04%)

12 Mud flats 503(9.66%)

13 Water 927(17.8%)

Table 1:  The Information of KSC Data

3.2 Data Preprocessing and the Algorithm Steps

In the experiment, firstly, 25% data samples are selected randomly into the test set, the rest
of 75% data are used as the pool of training examples. Then nine different training sets with
different  proportion  of  samples  selected  randomly  from  the  training  example  pool  are
investigated, e.g. 5%, 8%, 10%, 12%, 15%, 20%, 30%，50% and 75%. Each training sets with
corresponding proportion are executed 10 times.  Pixel  values with respect to each band are
normalized. The experimental steps are as follows:

Classification algorithm

Input:  
X: Training set (labeled example set)
F: Test set (Unlabeled example set) 
Output:
 c(y): the category of each test sample f .
Each training sample x ϵ X  or test sample f  ϵ F is normalized.

Use the training set to form the over-complete dictionary cD .

Use lasso algorithm to decompose the test sample sparsely to get the

sparse representation coefficient â .

According to formula (2.2)，calculate the residual error ( )cR f  of test

sample which was sparse approximation by dictionary composed of samples
of the cth category. Then the test sample is categorized to the corresponding
category according to the minimum residual error.

Stop repeat step 3and 4 until all the test samples are categorized.
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3.3 Experiment Results and Analysis

The  classification  accuracy  is  the  average  of  the  ten  experimental  results.  The
classification  method  used  for  comparison  is  HSVM.  Table  2  compares  the  classification
performances of HSVM and sparse representation (SR) at diffident sampling rates. For the two
compared algorithms on each data set, the average classification accuracy increase as the size of
labeled data set gets large and SR consistently demonstrates better performance compared to
HSVM. 

Training rate Number of sampling HSVM SR

5% 256 85.562 86.603

8% 411 86.042 88.753

10% 516 86.779 89.434

12% 620 86.901 90.245

15% 776 87.192 91.186

20% 1037 88.329 91.867

30% 1557 89.265 93.145

50% 2601 90.252 94.147

75% 3904 91.889 94.889

Table 2: The Classification Accuracies of HSVM and SR

Furthermore,  table  2  describes  the  corresponding  relationship  between  classification
accuracy and different  rate  of  the  training sample,  namely,  the  number  of  training  sample.
Figure 1 draws the relation curve between classification accuracy and the number of training
sample according to the specific experiment results.

Figure 1: the relation curve between classification accuracy and the number of training sample

Through analyzing table 2 and figure 1, we can easily find that the classification accuracy
monotonically  increase  with  the  number  of  labeled  samples.  In  the  experiment  of  SR,  the
proportions  of  selected  training  samples  are  gradually  increased  from  5%  to  75%.  The
classification accuracy is gradually increased from 86.603% to 94.889%. 

4. Conclusion

In this paper, we proved that classification accuracy of hyperspectral data is positively
correlated with the number of labeled samples. According to the theory of sparse representation,
firstly,  we derive the relationship between the number  of labeled samples and classification
accuracy. Then through the experiment, we give the correlation curves between the number of
labeled samples and classification accuracy. When the number of labeled samples reaches 10%
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or  more,  the  classified accuracy can be ensured more than 90%. Obviously,  the  number of
labeled samples plays a critical role on classification accuracy.
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