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3D Inner-distance, which is defined as the length of the shortest path between points within 3D
shape,  is  robust  to  articulation,  especially  in  non-rigid  3D shapes;  thus  it  can  be  used  to
construct  the  robust  3D  shape  feature  descriptor.  With  the  increasing  data  scale,  the  time
consumption has become a problem in extracting the 3D inner-distances. In order to accelerate
the  process  of  extracting  the  3D  inner-distances,  we  propose  a  new  method  by  using  a
hierarchical  graph  to  compute  the  inner-distances.  In  this  paper,  we  first  put  forward  an
adaptive-voxelization method based on Octree structure to construct a hierarchical graph; then
the multi-level process of extracting 3D inner-distance is thus proposed.
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1. Introduction

With the development of the computer science and technology,  3D shape models have
been widely applied in many fields, such as 3D computer games, 3D printing, VR technology
and medical-imaging devices, etc.. The feature descriptor of the 3D shapes plays a central role
in  computer  graphics,  computer  vision  and  pattern  recognition.  The  shape  descriptor  most
widely applied is based on the distance between point pairs on shape surfaces, like Euclidean
distance (ED) or  geodesic  distance (GD);  however,  both of  them can not  reflect  the  shape
articulation well. In this paper, we focus on the inner-distance which is robust to articulation[1]. 

Moreover,  with more and more attention attracted by the Big Data,  we initiate to pay
attention to  the  inner-distances  of  all  point  pairs,  not  just  sample points;  however  with the
growth of the data scale, the time consumption has become a prior factor when selecting the
computing methods. Thus, in this paper, we propose a novel computing method to accelerate the
computing process. 

Different from the methods as proposed by YS. Liu et al [2], or Chen and Yan [3], which
computed the shortest path by only using one graph, our method is based on a hierarchical graph
to  separate  the  shape  points  to  different  classes  according  to  their  space  location.  The
hierarchical graph consists of graphs at different levels from coarse to fine. When extracting the
shortest path of two points, according to their space distribution, we choose the corresponding
graph and thus accelerate the computation greatly.

In order to construct the hierarchical mapping relation, the first step we should complete is
voxelization, which is a process that we transfer shape models from mesh representations to
volume ones and through which we can formulate a set of voxels not only containing the surface
information  of  shapes  but  also  describing  the  attributes  within  shapes.  There  are  many
voxelization methods, such as the one proposed by Wu et al [4], or Mu et al [5]. Both of their
methods were based on fixed resolution. Since a lot of the inner voxels share the same attribute,
the  storage  of  the  voxels  is  not  quite  efficient.  Chen  and  Yan  [3]  proposed  an  adaptive-
voxelization method to resolve this problem; however, the result cannot reflect the hierarchical
relation of the voxels. Thus it is not convenient to construct the hierarchical graph we need;
consequently,  we  hereby  propose  a  novel  adaptive-voxelization  method  based  on  Octree
structure.

The remainder of this paper is organized as follows: in Section 2 we describe the adaptive-
voxelization in detail; in Section 3 we introduce the multi-level process of extracting the inner-
distance; in Section 4, we present the experimental results; and finally in Section 5, we conclude
this paper. 

2. The Adaptive-Voxelization

2.1 Octree Construction

Our adaptive voxelization method is based on an Octree structure. Octree is a basic data 
structure usually used to present the 3D space relationship. For each shape model. We construct 
an axis-aligned octree. We begin with the min bounding box containing the whole shape, then 
subdivide it into 8 equal-size children. Each octree is split into 8 children recursively when 
necessary. 

Adaptive-voxelization is a process of octree subdividing. We divide the octree node into 8 
children recursively when it contains sample points. If the size of the non-empty cells (contain 
sample points) less than a thresholdt  (usually decided by the size of the bounding box and the 
average triangle size of the mesh model), stop subdividing. The empty cells (contains no sample
point) are classified as being inside or outside, which we will present in next chapter. 

2.2 Inside-Outside Test

After  constructing  the  octree,  the  empty octree  cells  are  classified  as  inside  voxel  or
outside voxel. Including the surface voxel (defined as the voxels at the highest resolution level
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which contain the  sample  points),  there  are  three types  of  voxel  cells  in  total,  namely,  the
surface voxels, the inside voxels and the outside voxels. 

The inside-outside test is mainly used to classify the empty cells. Inspired from the main
idea of the inside-outside test proposed by Adams and Dutre [6], we classify the empty cells
according to its neighbours. 

Our judging method is different from theirs. As we have learned for computer graphics, if
the triangle of the surface is pointing to the empty cell, the cell must be outside the shape or it

must  be inside the shape.  In this sense,  let  oc  represent  the centre of  the target  cell, c t

represent the centre of its closest triangle, and let  be n t the normal of the closest triangle
corresponding to its principal neighbour. If (c t−co)⋅nt>0 , the target cell will be classified
as inside voxel; otherwise, it will be classified as the outside voxel.

Moreover, in order to deal with the boundary case, for example, if there is only one non-
empty children in  the  root  octree,  we can only classify its  3  principal  neighbours  with the
attribute  of  the  rest  neighbours  we  cannot  judge  because  their  neighbours  haven’t  been
classified. Thus we make some rectification to their testing process. For each root octree, we
proceed the test for three times (if all the empty children are classified, break this process); if the
three principal neighbours haven’t been classified, just pass the target children; afterwards, we
finish  classifying  its  neighbours  and  then  determine  its  attribute. After  the  two  steps,  the
adaptive-voxelization is complete with some instance shown in Fig. 1.

  

Figure 1 : Some voxelization results: the green cubes represent the voxels and the blue triangles
represent the shape meshes.

3. Computing Inner-distances 

After finishing the adaptive-voxelization,  we transfer  3D shapes from mesh models  to
volume model.  The computing method proposed by Chen and Yan [3] constructed only one
graph using all the voxels, then extracted the shortest path between points pairs (voxels pairs
which contains the points). 

Although the adaptive-voxelization has reduced the number of voxels, the number is still
quite large. Thus the almost o(n2

) computing process (Dijkstra Algorithm) is still consuming
much time. In order to accelerate the computing process, we propose a novel method. Referring
to the main ideas proposed by Barnes and Hut [7] and Gray and More [8],  we propose to
construct a hierarchical graph instead. 

3.1 Construct the Hierarchical Graph

     The distance, as a shape feature, is mainly used to describe the attribute of shapes and can 
reflect the distribution of shape points. As a matter of fact, when the points are close to each 
other, the distance between them must be very precise; when they are far away, an approximate 
value can meet the requirement. Thus we propose to construct a hierarchical graph.    

We construct several levels of graphs according to the highest resolution level of the shape
voxelization results. 

The hierarchical graph G={G0 , G1 , ... , Gt }( t≤Resmax) . For each graph Gi ,
Resi<(Resmax−i) , Resi is the maximum resolution revel of voxels which represent 
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nodes of Gi . We construct the hierarchical graph from G0 to Gt so that when we 
construct , we can obtain the correspondence between Gi and Gi−1 .

The constructing process is shown as follows:
1. Traverse the octree, select all the leaf nodes whose attribute is inside voxel or 

surface voxel as the graph nodes of G0 . 
2. For each graph Gi , we first traverse all the nodes of Gi−1 ,  let r j be the 

resolution level of the voxel corresponding to the node j in Gi−1 .
3. If r j<(Resmax−i) , the node j is selected to construct the graph Gi ; 

else we trace back to the parent of the voxel, then judge the resolution again.
4. Then record the mapping relationship between the nodes in Gi and Gi−1 .

After finishing all this process, we construct the hierarchical graph successfully.

3.2 Distance Rectification

When the graph becomes coarser, which indicates the maximum resolution level becomes
smaller, the error of the inner-distance that we compute will increase. Thus we need to do some
rectification so as to get accurate results.

When we analyze the voxelization results, we will find that there are several inside voxels
whose resolution levels are  lower  than the maximum resolution of the shape,  a part  of  the
shortest path of a lot of point pairs; and we define them as local centre voxels, as shown in Fig
2.

Figure 2 : Some big local center voxels are shown in red cubes in the figure. They are just a 
part of the local center voxels rather than all the local center voxels.

As the local center voxels are not in a fixed resolution but located at different part of the
shapes,  we  can  uniformly select N voxels  according  to  the  distribution  as  the  rectifying
center NV  , which is much smaller than the number of the voxels. Then we extract the shortest
path from voxels in NV   by using the graph G0 , and record the distance from the local centre
voxels to all the surface voxels which contain the sample points; therefore, if we compute the
inner-distance between voxels A and B, disAB , we firstly find the shortest path by using the
proper graph, and find local centre voxel C in the path, then replace the distance with the sum of
AC and BC, disAB=disAC+disBC . In this way, we can ensure the accuracy of the computing
results.

3.3 Computing Process

In the hierarchical graph ( )G t  , we extract the shortest path starting from one voxel for t
times in each graph and set t thresholds thresi( t) for each graph. When the distance is bigger 
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than the thresi , we stop the extracting process, which means that when we use higher level 
graph whose contains more nodes, we just extract paths containing a little nodes, which will 
greatly accelerate the almost o(n2

) process of extracting shortest paths. The outline of our 
algorithm for computing an approximation of inner-distance is given below.

    Multi-Level Algorithm for fast computing the inner-distance:
1. Complete the process of adaptive-voxelization.
2. Construct the hierarchical graph G(t ) .
3. Extract the shortest path and record the distance data from the local center voxels V N

in graph G0  .

4. For each surface voxel, we extract the shortest path from it in the graph G(t )
(proceed the extracting process for each graph Gi ), record the path and distance. 

5. Proceed the distance rectification for {G 0 ,G1 ,... ,G t} . When the path includes the 
local center voxels, we rectify the distance through one of them.

6. For each point pair, we search the distance data from G0 to Gt , once we find valid 
data, stop searching and record it as the inner-distance of the point pair.

3.4 Average Inner-Distance

The inner-distance  data  can  reflect  the  attribute  of  point  pairs.  If  we  want  to  get  the
attribute of every point in 3D shapes, we should calculate the average inner-distance [3]. In this
case, we don’t extract key points; thus every surface voxel equals to a key point. Moreover, in
our adaptive-voxelization method, the surface voxels are of the same size. Thus we can simply
the calculating equation, which is shown as follows:

u i=∑
1

N

disij                                            (3.1)

In this  equation, ijdis  represents  the  inner-distance data  and N is  the  number  of  the

surface voxels. To make it stable, we normalize the average inner-distance:      
             uni=(umax−u i)/(umax−umin)                                                       (3.2)

We give some average inner-distance instance in Fig. 3, in which, the color: red,    yellow,
green to blue represents the data from minimum to maximum.

4. Experiment and Results

In this section, in order to show the performance of our novel method, we will give some
results of former methods and ours.   

We demonstrate our experiment on several artificial and scanned models, and each model
is originally represented in triangle formats. Table 1 gives the time in seconds for the multi-level
method in reference to the paper and the method as proposed by Chen and Yan [3], where T1 is
the computational time of our method, T2 is the computational time of theirs, n is the number of
the points in the models, m is the number of the voxels of the models in volumetric forms, k is
the maximum resolution level of the models and A.E. is for average error.
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Figure 3 : Some Average Inner-distance Instances

Then we test the accuracy of our method. In the experiment, we compare our results with
those generated by the method of Chen and Yan [3] and the one using the  fixed resolution
graph. We will list the maximum distance error and average distance error (as the method using
the fixed resolution graph costs too much time, we only compare some sample point pairs).
Considering when the points are nearby, we should get the accurate value; and when the points
are far away, we only need the approximate value. We add a weight w when computing the
average error according to the distance of point pairs. Experiment results are shown in Table 2.
Max error 1 and average error 1 are the results in case of comparison with the  method of Chen
and Yan [3], and average error 2 are the results in case of comparison with method by using
fixed resolution graph.

Model T1(s) T2(s) A.E.(%)

Human 17.654 69.45 3.66 4706 15333 7
Cups 34.077 326.76 4.17 15198 23705 6

Airplanes 2.27 20.21 4.68 6448 4171 6
Ants 5.325 47.27 5.14 8388 6427 6

Chairs 9.54 80.19 4.35 14372 8321 6
Birds 7.899 69.08 6.6 3478 10250 7
Bears 16.429 117.04 5.38 10752 9846 6

Table 1: Inner-distance Computational Time of Different Methods

According to the data in Table 2, the average error is almost 5% and the max error is 20%
(the point pairs are far away); when point pairs are nearby, the error is lower than 5%. Thus the
results obtained by our method are precise enough to describe the shape feature. In respect of
the data in Table 1, the run time of our method is much less than theirs.
=

Model Max Error 1 Average Error 1 Average Error 2
Human 21.5 3.66 4.35
Spectacles 18.4 4.25 4.78
Airplanes 23.39 4.68 5.02
Hands 19.45 4.57 5.14
Pliers 24.67 6.41 6.61
Fishes 22.92 5.81 6.02
Birds 16.95 6.6 6.87

Table 2: Inner-distance Computational Accuracy Comparison

5. Conclusion
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In  this paper,  we propose a novel  multi-level  method of extracting all-pairs 3D inner-
distances of various shape models. The experiment results show that, when compared with the
former methods, our method can accelerate the computing process greatly. When the data scale
grows larger, our method will show better performance in terms of the computing time.
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