
P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
3

Multi-Objective Bottleneck-Aware Allocation of Multiple
Resources

Jun Liu12

College of Mathematics and Information Science, Qujing Normal University
Qujing, 655011, China
E-mail:liujunxei@126.com

The ever-growing demand for cloud resources places the resource management at the heart of
design and decision-making processes in the cloud computing environment. In this paper, we

consider multi-objective allocation to optimize the max min(ix), maximize job numbers, and

maximize resources utilization simultaneously. Firstly, a greedy online framework is presented
to allow the scheduling decisions to be made based on any well-defined value function. In order
to tackle the possibly conflicting objectives, we propose a fuzzy-based priority approach to
explore the tradeoffs of two or more objectives at the same time; secondly, a novel algorithm is
designed to find the nearest integer solution efficiently while maintaining the constraints and
tightly bounding the optimal solution. In addition, this algorithm has very desirable runtime and
solution quality properties when the number of tasks and machines become large.

CENet2015
12-13 September 2015
Shanghai, China

1Speaker
2The work was supported by Chinese Natural Science Foundation Grant No. 11361048.

 Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
3

Multi-Objective Bottleneck-Aware Allocation of Multiple Resources Jun Liu

1. Introduction

Cloud computing, such as Amazon EC2 [1], Microsoft Azure [2], and GoGrid [3],
has become a hot research application and is a new computing model. The ability of
cloud computing for users to immediately demand and obtain remote resources to help
with computing and storage draws much interest from the computing and community.
The cloud’s key features include the pay-as-you-go model and elasticity. Users can
instantly scale resources up or down according to the demand or the desired resources
time. Current production resource management and scheduling systems often use some
mechanism to guarantee fair sharing of computational resources among different users
of the system.

There are several works that propose novel multi-resource aware scheduling methods. For
example, one of the most popular allocation policies proposed so far is max-min fairness[4], a
flexible resource allocation mechanism used in the most datacenter scheduler. The efficient and
fair design algorithms for sharing multiple resources is becoming increasingly important.
Dominant Resource Fairness (DRF)[5] suggests performing max-min fair share algorithm over
so called dominant user’s share, which is the maximum share that a user has been allocated of
any resource. A new allocation model Balancing Fairness and Efficiency with Bottleneck-Aware
Allocation(BAA) [6] has found greatly appropriate balance between fairness to the clients and
the maximized system utilization. The model provides clients that are bottlenecked on the same
device with allocations that are proportional to their fair shares, while allowing allocation ratios
between clients in different bottleneck sets to be set by the allocator to maximize the utilization.
No agent left behind [7] proposes a dynamic resource allocation mechanism. Also, all these
approaches make the assumption that all jobs and/or resources are continuously divisible. This
paper presents an allocation with time limit on the bottleneck resources. This mechanism can
meet some good properties, improve the robustness of the algorithm and have more practical
value.

The reminding of the paper is organized as follows: in the following section, we will
present Bottleneck-aware allocation with fuzzy-based priority approach and its inspiration. We
give some good fairness properties and prove algorithm meet in Section3. Section 4 analyzes the
performance algorithm on real data. The paper will be concluded in Section 5.

2 Bottleneck-aware Allocation

2.1 Basic Setting

(1)),,,(21 kuuuU  : the set of users.),,,(21 krrrR  : resource types. We define a variety of
resources which types are not limited. C =(nccc ,,, 21 ) : resource constraints which is total
resource systems have.

(2) As to every user i , we normalize the resource demand vector to id , where ird is the
fraction of resource r required by each task of user i over the entire system. As to the simplicity,
we assume positive demands for all users, 0ird , Ui , Rr .

(3) Let ix be the number of tasks processed on the server for user i .

(4) Let iA denote the allocation of client i under some resource partitioning. The total

throughput of the system is 
i

iA .

(5) We assume to have two resources: CPU and Memory. The load of a client i on the
Memory is ih and on the CPU is. im Partition the clients into two sets S and D based on their hit
ratios. D and S is the set of users who have the same bottleneck resource CPU for Di and
Memory for Sj .

2

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
3

Multi-Objective Bottleneck-Aware Allocation of Multiple Resources Jun Liu

For now, we assume users have a finite number of tasks to be scheduled. Infinite users join
system at different times.

For example, we assume U =(21,uu) and R =(4321 ,,, rrrr). The resources of the system are

C=(CPU, Memory)=(1,2). The resources demand：)2.0,8.0(1 d and)6.0,2.0(2 d . In this case,

33.0
3

1
balh , 8.0

2.08.0

8.0
1 


m and 25.0

6.02.0

2.0
2 


m . So Du 1 and Su 2 .

2.2 Bottleneck-aware Policy

 (1) Fairness between clients in :
 kDji  , , djjii pmAmA  . (2.1)

As the users belong to the same set, they have the same dominant/bottleneck resource type.
Our goal is that the same set of users sharing dominant/bottleneck resources are no less than the
other users from the equity considerations. The dominant/bottleneck resource type of users in the
set D is CPU.

 (2) Fairness between clients in S :
kDji  , , sjjii phAhA  . (2.2)

The dominant/bottleneck resource type of users in the set S is Memory.
(3) Fairness between a client in D and a client in S
The dominant/bottleneck resource type of users in the set D is CPU, and users in S is

Memory. Allocation mechanism to make the share resources CPU of users in set D are greater
than those in set S, and resources memory of users in set S are greater than those in set D.

 Di , Sj , jjii mAmA  . (2.3)

 Di , Sj , iijj hAhA  . (2.4)
(4) resources restriction
The total resources of users’ share are no more than the total resources of the system.

CPUi
Ui

i CmA 


. (2.5)

Memoryi
Ui

i ChA 


. (2.6)

2.3 Mono-objective Allocation

Mono-objective allocation considers a single optimization objective when deciding where
to assign each user. In this subsection, we present three mono-objective allocations to maximize

the job numbers, max min (ix), and maximize resources utilization, respectively. The following

describes the two objective.
Maximize job numbers: To maximize the total number of tasks of users can run. The

validity range],[maxmin
sss EEE  can be calculated using a greedy algorithm by simply mapping

resources into the user who has the minimum resource requirements.

) ,min(
21 i

i
i

i

i

Ui
is d

h
A

d

m
AE 


. (2.7)

Max min(ix): to maximize the number of tasks of the user who has the minimum number

of tasks. No user left behind: let the number of a user's task to run will not be reduced because of
new users joining in the system; however, the resource requirements per task of each user are not
same. This approach allows users who have bigger resources demand per task have the
advantage. To estimate a feasible valid interval] ,[maxmin

xxx EEE  , we use the simple algorithm
by allocation resources to user who has the minimum dominant/bottleneck resources.

)min(ix xMaxE  , Ui . (2.8)
Maximize resources utilization: in this sense, upon the allocation of resources, the CPU and

memory can maximize the utilization of the system so as to improve the use efficiency of the
system resources. This value represents the lower bound max

AE of the (2.9) constraint

3

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
3

Multi-Objective Bottleneck-Aware Allocation of Multiple Resources Jun Liu

] ,[maxmin
AAA EEE  , where max

AE is again calculated by allocating each resource on the users to
maximize resource utilization.





Ui

iA AE . (2.9)

2.4 Multi-objective Allocation with A Fuzzy-based Priority Approach

In order to optimize two or more objectives at the same time, we propose a novel fuzzy-
based priority approach to perform resources allocation.

(1) Dual-objective allocation: we first consider optimizing two objectives, for which, we
use the following composite value function.

 yxyx EfEE),(,  . (2.10)

The first objective X up to the specified fuzzy factor is selected to improve the second
objective Y. The simple priority approach, on the other hand, would have allocation for the best
X with much worse Y. The value of fuzzy factor as well as the priority should depend on the
relative importance of the two objectives for optimization, which can be set by the user on the
system administrator.

To implement the fuzzy-based priority, the value function for the first objective X is
normalized between 0 and 1 in order to take the fuzzy factor into account, i.e.,

XX

XX
X

EE
EE

E
minmax

min


 . (2.11)

Where xE max and xEmin denote the maximum and minimum value in terms of objective X.
(2) Multi-objective allocation: With more than two objectives ,we can take a similar

approach of optimizing one objective after another, but with combined value functions that
consist of two or more objectives. For instance, the weighted sum method can be used to

combine maximize resources utilization and max min (ix)to form a single objective, i.e.,
XAXA EEE)1(,   . (212)

Where]1 ,0[ denotes the relative weight assigned to resources utilization. Note that the
functions for both objectives are format 0 and 1 to form a meaningful combination. Then, to
optimize the maximum job numbers with the combined value(of maximize resources utilization

and max min(ix)), the following composite value function can be constructed
AXSAXS EfEE),(,  . (2.13)

In the case where the first objective is a combination of two or more objectives as in
Equation(12), the combined value needs to be normalized while taking into account the fuzzy
factor, i.e.,

AXAX

AXAX
AX

EE

EE
E

minmax

min




 . (2.14)

The fuzzy-based priority rule described previously can then be applied in the same way as
before. The exact priorities among different objectives and the fuzzy factor again depend on their
relative importance.

2.5 Static Bottleneck-Aware Allocation

In this section, we present algorithm for static resources allocation. We assume all users join
the system at same time in the static allocation. Optimization for allocation

 Maximize AXSE , . (2.15)
According to Equation (2.1-2.6).
As the result is fractional solution from the linear programming, resources which users

share are not the integer multiple of resources request per task and the extra part is meaningless;
therefore, we propose Algorithm 1 to solve this problem so that the user is assigned to the
resources needed just an integer multiple of the resources which will not be wasted.

4

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
3

Multi-Objective Bottleneck-Aware Allocation of Multiple Resources Jun Liu

In the original problem, tasks are not divisible; so one must determine an integer number of
tasks. Algorithm is needed to compute an integer solution from this real-valued solution. The
following algorithm finds ix such that it is near ix while maintain the resources constraint.

Algorithm 1 finds ix that minimizes
1

*
ii xx  for a given user i.

ALGORITHM1 Round to the nearest integer solution while maintaining
the constraints

Input:),,,(21 nuuuU  set of users,),,,(21 nxxxx  set of tasks of each
user，),(21 ccC  resources CPU and Memory of the system

Output: allocation x

1: for iu in U

2:) ,min(
21

*

i

ii

i

ii
i d

hA

d

mA
x 

3:  **
iii xxf 

4:   1
*

11 ii dxcc  ,   2
*

22 ii dxcc 
5: end for
6: Sort the users in descending order of if

7: if 11 cdi  and 22 cdi 

8:  *ii xx 

9: Update resources 1c and 2c
10: else
11:  *ii xx 
12: end if

Algorithm 1 operates on each row of *
ix independently. Let if be the fractional part of the

number of tasks that must be rounded up to satisfy the resources constraints. The algorithm
simply rounds up those tasks that have the largest fractional parts. Everything else is rounded

down. The result is an integer solution ix until all tasks have been assigned properly.

For the complexity of Algorithm 1, the sorting and initialization takes 0 (nlogn) time. In the
loop, algorithm need 0 (n) time to allocate resources; therefore, the overall complexity is 0
(nlogn).

2.6 Online Bottleneck-aware Allocation

The user may join the system at any time in practical applications of the system, so the
allocation of resources is dynamic. We assume that a user is added to a system with bring n

1 of
resources, and resources are allocated to users who join the system by the system. The system has
k users and the total resources of the system are k / n at step k.

ALGORITHM2 Greedy Online Allocation pseudo-code
Input:),,,(21 nuuuU  ,),(21 ccC  resources CPU and Memory of the system
Output: allocation x

1: Wait new user iu joins to system

2: Sort the users of D and S in ascending order of dominant resource

3: for iu in U

4: pick iu is in D or S

5: if (satisfy the constraints)

6: allocate resources to iu
7: end for

5

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
3

Multi-Objective Bottleneck-Aware Allocation of Multiple Resources Jun Liu

For the complexity of Algorithm 2, the sorting and initialization takes 0 (nlogn) time. The
system can dynamically adjust the order of S or D in each allocation, so the time complexity is 0
(n). In the loop, algorithm need 0 (n) time to allocate resources. Therefore, the overall
complexity is 0 (n).

3. Fairness Properties

The following are important and desirable properties of a fairness:
(1) Sharing incentive(SI). Each user should be better off sharing the cluster. In this paper

we will use fair share defined by user’s share resources more than 1/n total resources.
(2) Envy-freeness(EF). A client cannot increase its throughput by swapping its allocation

with any other client, that is, users prefer their own allocation over the allocation of any other
user.

(3) Pareto efficiency(PE). It should not be possible to increase the allocation of a user
without decreasing the allocation of at least another user.

Theorem 1. Satisfies the SI property
Proof. Du  1 , we have 2211 mAmA  for Du 2 according to (2.1), and 2211 mAmA  for

Su 2 according to (2.3). The system has n users, so 1u share dominant resources more than
1/n total resources in the system.

Theorem 2. satisfies the EF property
Proof. Du  1 , if SDu or 2  , we have 2211 mAmA  or 2211 hAhA  according to (2.1)

(2.2).
Theorem 3. Satisfies the PE property
Proof. We assume system have resources c to increase the allocation of a user without

decreasing the allocation of at least another user. So Uui  , cAA ii  , cc  ,. We have





Ui

i
Ui

i AcA . It contradict with (2.9)(2.15).

4. Experimental Results

We’ve presented the potential and efficient algorithm with the complexity of 0(n) to realize
the allocation mechanism. Our next goal is to analyze the performance on real data. We perform
extensive experiments in order to investigate the properties of the proposed algorithms. In order
to analyze the performance, we present real data in experiments. We assume that each user
brings the user 1/n of resources to join the system. As to our data, we use traces of real
workloads on a Google compute cell for a 7 hour period [8]. The workload consists of tasks,
where each task ran on a single machine, and consumed memory and one or more cores; the
demands fit our model with two resources. For various values of n, we sampled n random
positive demand vectors from the traces and analyzed the value of the three objective functions.

For the sake of convenience, we assume each user joining to the system one by one. Each
user submits the computing jobs, which are thus divided into a number of tasks with each
requiring a set of resources. Experimental platform environment is using C# in Visual studio
2013.

6

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
3

Multi-Objective Bottleneck-Aware Allocation of Multiple Resources Jun Liu

Figure 1: CPU and Memory Needs of Each Task in Real Data

Fig. 1 shows the CPU and Memory needs of each task for the actual architecture form [8].
The CPU or Memory need range of each task is (0,1).

Fig. 2 and 3 show that real users added to the system with n=1000. Fig. 4 and 5 show the
real users added to the system with n=2000. Fig. 2 and Fig. 4 show CPU utilization, and figure 3
and figure 5 show memory utilization. The utilization of CPU and memory are all close to
100%.

Figure 2: CPU Utilization with n=1000

Figure 3: Memory Utilization with n=1000

7

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
3

Multi-Objective Bottleneck-Aware Allocation of Multiple Resources Jun Liu

Figure 4: CPU Utilization with n=2000

Figure 5: Memory Utilization with n=2000

5. Conclusion and Future Work

In this paper, we have considered online resources allocation and static Bottleneck-Aware
allocation. We applied a novel fuzzy-based priority approach to a greedy online allocation

framework for optimizing multiple objectives simultaneously, including the max min (ix),

maximized job numbers and maximized resources utilization. The result has also demonstrated
the effectiveness of our approach for exploring and optimizing the tradeoffs between two or
more objectives. A novel Algorithm 1 was presented that could efficiently compute a near-
optimal profit schedule. This algorithm computationally scales very well as the number of tasks
grows.

There are several challenges that we need to address in order to complete the research.
Firstly, we assume that the user is added to the system without leaving the system in our model,
but the reality is that the user is able to leave. Secondly, we assume that the task resources
submitted by users do not change, which does not conform to the actual situation. We plan to
further analyze the performance and suitability of the production solution as well as possible
problems that may appear in the future. As to the future work, we use this allocation mechanism
in the real system (e.g., Hadoop, yarn).

References

[1] M. Ambrust, A. Fox. Above the Clouds: A Berkeley View of Cloud Computing[EB/OL].(2011-
01-25). http://www.eecs.berkeley.edu/pubs/ techrpts/2009/EECS-2009-28.pdf.

[2] M.Isard, V.Prabhakaran, J.Currey, U.Wieder. Fair Scheduling for Distributed Computing
Clusters[J]. Storage Technologies. 16(2):261-276(2009)

[3] J. dean,, S. Ghemawa. MapReduce: Simplified Data Processing on Large Clusters[J]. Compute
Science. 26(2): 467-475,(2004)

8

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
4
3

Multi-Objective Bottleneck-Aware Allocation of Multiple Resources Jun Liu

[4] A. Ghodsi, M, Zaharia, S.Shenker, I.Stoica., , Choosy:Max-Min Fair Sharing for Datacenter
Jobs with Constraints[J].,Computer Science. 32(4):124-135(2013)

[5] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski. Dominant resource fairness: air allocation
of multiple resource types[J]. In Proceedings of the USENIX Conference on Networked Systems
Design and Implementation. ,,23 (1):24-28(2011)

[6] H. Wang, H.Varman. Balancing Fairness and Efficiency in Tiered Storage System with
Bottleneck-Aware Allocation[J]. In Proceedings of the USENIX Conference on File and Storage
Technologies. 35(4):229-242(2014)

[7] I. Kash, D.Ariel. No Agent Left Behind: Dynamic Fair Division of Multiple Resources[J]. Journal
of Articial Intelligence Research. 51(2):579-603(2014)

[8] M.Isard, M.Budiu, A.Birrell, D.Fetterly. distributed data-parallel programs from sequential
building blocks[J]. Engineering Analysis. 32(1): 67–75(2007)

9

	1. Introduction
	2 Bottleneck-aware Allocation
	3. Fairness Properties
	4. Experimental Results
	5. Conclusion and Future Work
	References

