
P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
5
7

Design and Implementation of Health Management
System Based on iOS Platform

Fei Xu12

CAD and Network Technology Research Institute,Dalian University of Technology
No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province,Dalian, 116023,China
E-mail: 761866521@qq.com

Yanping Hu

CAD and Network Technology Research Institute,Dalian University of Technology
No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province,Dalian, 116023,China

Yahui Cheng
CAD and Network Technology Research Institute,Dalian University of Technology
No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province,Dalian, 116023,China

Yan Zhang
CAD and Network Technology Research Institute,Dalian University of Technology
No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province,Dalian, 116023,China

Zhe Sun
CAD and Network Technology Research Institute,Dalian University of Technology
No.2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province,Dalian, 116023,China

The health management system based on iOS platform was designed and developed to meet the
needs of users’ personal health management. It can be divided into three function modules,
namely, the measurement records management, the diet analysis and the message receiving. The
system was also implemented in combination with the latest Swift programming language and
the Objective-C APIs. In the realization process, Quartz 2D was used to draw graphs, which can
help users to understand their own health trends; with the search display controller, the
implemented keyword search function can facilitate the users to find food in the list quickly; and
by means of data synchronization technology and JSON parsing technology, the operating
efficiency of the system was also improved.

CENet2015
12-13 September 2015
Shanghai, China

1Speaker
2Fund project: major national science and technology projects(2011ZX04015-021)

 Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). http://pos.sissa.it/

http://pos.sissa.it/

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
5
7

Design and Implementation Fei Xu

1. Introduction

With the fast growing mobile technology, the number of newly-developed mobile medical
software has increased dramatically. This kind of software can not only provide a large amount
of clinical information to the healthcare practitioners, but also help improve the users’ own
abilities of health management. [1-3]. In June 2014, Apple launched a new programming
language called “Swift”, which is simple, efficient and easy to learn [4]. When we are enjoying
Swift’s new features, we can also take advantage of Objective-C APIs.

In order to meet the demands of health management and be in accordance with the user-
centered principle [5], a health management system was designed, by which the users can record
their own health data and develop health life plans effectively; therefore, this application can
help users prevent diseases and work as an effective therapy assistant. To help the users
understand their own health status better, the measurement records are presented in the form of
both lists and graphs. In order to ensure that users can find the food and record in short time, the
keyword searching function based on food names is provide; at meanwhile, by leveraging the
data synchronization technology, JSON parsing technology and multi-threading technology, the
amount of network data transmission has been reduced with the time of page loading shortened.

2. System Design

2.1 Design Pattern of System

In MVC (Model-View-Controller) pattern, the view and the model are separated; the
controller is the bridge between the view and the model [6]. The system architecting based on
MVC pattern is shown in Fig. 1.

View

Measurement records
management

Diet analysis Message recieving

Controller

Updating local data
Performing data
synchronization

Configuring data
 for views

Model

SQLite database Property List file Network data

Figure 1: System Architecting based on MVC Pattern

2

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
5
7

Design and Implementation Fei Xu

Diet analysis module

measurement records
management module

message receiving module

Figure2: Systematic Function Module

(1) View. It is responsible for interaction with users. The recorded data can be converted
into the form of lists or graphs and it allows users to add, change and delete the data.

(2) Controller. It is used to configure the data source and obtain changed data from views.
After logic verification, it will update local data and synchronize data.

(3) Model. It can be divided into two parts: the local data and the network data, in which,
the former is stored in the SQLitle3 database and Property List file, while the latter is in JSON
format which needs to be parsed.

2.2 System Functional Module

As shown in Fig. 2, the health management system consists of three functional modules,
including the measurement records management, the diet analysis and the message receiving.

(1) Measurement records Management. In this module, four measurement indicators was
provided, including blood pressure/pulse, blood lipids, weight/BMI and blood sugar index. The
measurement records can be converted into forms of lists or graphs. As to abnormal data,
special tips will be shown to the users. No matter the network is connected or not, user can add,
delete and change individual measurement records.

(2) Diet analysis. Based on the diet records, analysis of daily intake calories and intake
nutrition can be provided, which can assist users to make a reasonable adjustment for diet.
Meanwhile, the keyword searching function can facilitate users to find the food and record
quickly.

(3) Message receiving. This module includes care tracking, health activities, health
appointment and health Information. Care tracking means the health consultants can focus on
user’s data and give appropriate advices timely; health activities, service appointment, and
health information are used to provide recommended wholesome activities, services and health
tips.

3

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
5
7

Design and Implementation Fei Xu

3. Realization of Key Functions and Critical Technologies

3.1 Measurement Data Graph

Apple offers two graphics libraries: Quartz 2D and OpenGL ES. Between them, Quartz 2D
is an advanced and two-dimensional drawing engine. While the measurement graph is two-
dimensional as well, Quartz 2D was utilized to complete the drawing of measurement graphs.

3.1.1 Drawing the Coordinate Axis

In the graph, the horizontal axis represents the recording time and the vertical axis
represents the range of measurement values. The process of drawing axis can be divided into
two steps. The first step is to draw a line segment, which represents the coordinate axe. The
second step is to draw calibration labels of the coordinate axes. Taking the process of drawing
the X- axis line segment as an example:

(1) UIGraphicsGetCurrentContext () is called to return the current graphics context;
(2) The graphics context is used to save the drawing information (the start point and end

point) and the drawing status (color). At the same time, the line segment is drawn in the
graphics context;

(3) CGContextStrokePath () is called to paint a line along the current path in views.
The process of drawing the line segment, which represents the Y-axis, is the same.
The scale labels are custom UILable class, their position and size are set by CGRect ()

function. They are added into the view by addSubview () function. The time range of X- axis is
optional. Accordingly, the scale labels are dynamic and putted equidistantly along the X-axis
direction. The position is determined by the length of X-axis and the number of labels; the
content has a great relationship with the interval scale, which can be calculated by the number
of labels and the displayed time range.

The process of setting scale labels of Y- axis is similar to the scale labels of X- axis: they
are put equidistantly along the Y-axis direction and the content is determined by both the range
of measurement values and the number of labels.

3.1.2 Drawing the Measurement Curve

The process of drawing measurement curve is shown as follows:
(1) Records belonging to the period and selected by the users are filtered out;
(2) The selected records are mapped into points in the graph and positions of the points are

calculated as follows:

 (3.1)

 (3.2)

(3) The curve is a polyline, which is composed of points in (2). In order to save the
drawing information, CGPathCreateMutable () function is leveraged to create a path, and the
path was assigned to the path property of CAShapeLayer. In combination with CALayer and
CABasicAnimation, an animation effect can be added in the graph. The key code of plotting the
curve is as follows:

var path = CGPathCreateMutable()
CGPathMoveToPoint (path, nil, axisInset + xAxis [0], self.bounds.height - yAxis [0] -

axisInset)
for index in 0..< xAxis.count { . . .
CGPathAddLineToPoint (path, nil, xValue, yValue) }
var layer = CAShapeLayer()

4

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
5
7

Design and Implementation Fei Xu

layer.path = path
. . .
self.layer.addSublayer(layer)
var animation = CABasicAnimation(keyPath: "strokeEnd")
animation.duration = animationDuration
animation.fromValue = 0
animation.toValue = 1
layer.addAnimation(animation, forKey: "strokeEnd")

3.2 Keyword Searching Based on Food Names

When adding diet record, the users have to find the food to be recorded quickly. To meet
the needs, keyword searching based on the food names is provided. The keyword can be filled
into the search bar by two means: (1) input keywords directly by users; (2) click the history list
and the keyword will fill the search bar automatically. According to the keyword in the search
bar, the program will filter the data collection, and give the search results quickly.

3.2.1 Table View of the Search History

The last 20 searched keywords will be stored in the local searching history in respect of
the users’ food and the searched keywords don’t have to be synchronized to the server; thus the
plist file can be used to save the searched keywords. By using the GCD multithreading
technology, the query keyword can be saved to the plist file without reduplication in the query
of food. When the search for food interface is loading, the records stored in plist file will be
taken out and configured as a data source to a table view (UITableView) below the search bar.

There are two kinds of cells (UITableViewCell) in the table view: one is the custom cell,
used to display the food searched records. When the user clicks the cell, the search display
controller (UISearchDisplayController) will be activated by setActive () function and the
searched keyword in the cell will be filled into the search bar. The other is the original cell, used
to support users to clear the search records in the plist file. When the cell is clicked, the plist file
will be cleared and the table view of the search history will be refreshed.

3.2.2 Table View of the Search Results

Predicate (NSPredicate) is selected to filter data because it can specify the data filtering
method, features the advantage of high efficiency and is convenient to write. The food names
containing the keyword can be searched out by categories and the search results are presented in
a table view. The key code of filtering data is shown as follows:

var pred: NSPredicate = NSPredicate(format: "SELF CONTAINS %@", searchText)
for item in categoryArr {
var matches:Array = self.foodNameDic[item]!
var filteredArray:Array<String> =
matches.filter{ pred.evaluateWithObject($0) }
if(filteredArray.count != 0){
self. filteredFoodDict.updateValue (filteredArray, forKey:item)
self,filteredSection.append(item)}
Upon filtering out the qualified data, the searching display controller use its own table

view to display the search result, and all the cells in the table view are customized. Because the
table view of search results and the table view of history records share the same view controller,
the tag values should be used to distinguish the two tables. Of course, the data source methods
and the delegate methods in the two tables are different, as shown in Table 1.

5

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
5
7

Design and Implementation Fei Xu

Method Table view of history records Table view of search results

numberOfSections
InTableView:

1 The number of food categoriesin search
results

tableView:
titleForHeaderInSection:

"History list" The name of food categories in search results

tableView:
umberOfRowsInSection:

the number of history records +1 The number of searchedfood in this category

tableView:
cellForRowAtIndexPath:

the history records cell/the delete
cell

the search results cell

tableView:
didSelectRowAtIndexPath:

jump to search results
interface/clear local records in plist
files

jump to the food details interface

Table 1 : Processing Methods of Table Views

3.3 Data Synchronization Based on Timestamp

By using the data synchronization technology, the amount of data transmission will be
decreased and the speed of program loading will be increased. The primary concern of data
synchronization is capturing the change data. The timestamp-based capture method features the
advantages of high efficiency, less conflict and easiness of use [7], so the timestamp-based
method is adopted.

3.3.1 Design of Synchronization Tables

In order to record data submission time, UpdateTime Field should be added to both the
synchronization tables of both server-side database and client-side database. The processing of
deleted data is different from that of both the added data and the updated data. In order to
identify whether a record is deleted, IsDelete Field is added to the synchronization tables of the
server-side database and client-side database; when the network connection status switches from
disconnection to connection, the offline records stored in local will be synchronized to the
server. In order to identify whether all the records are uploaded to the server-side database, State
Field is added to the tables of the client-side database.

Start

If the
 network status is

connected

Is any
record’s State Field

value equal 1
Y

 the record Will be
updated to the server,
and in the client table
the record will be
deleted.

sourceMaxTime is obtained
from the server-side
database, targetMaxTim e is
ob tained from the client-side
database.

Y

The Record s tored in
the client-side database,
and its State field value
is set to 1 N If sourceMaxTime

 > targetMaxTim e
Records ranged between
sourceMaxTime and
targetMaxTime will be taken
out from the source table,
they will be synchronized to
the target table

End
N

N

Y

Figure 3: Flowchart of Data Synchronization

3.3.2 Capture of the Change Data

In the timestamp-based capture method, the record’s update time is an important basis and
recorded in tables as an UpdateTime Field value. In the process of synchronization, the
maximum value of UpdateTime Field should be taken out firstly from the source table, i.e.
sourceMaxTime, so is the maximum value of UpdateTime Field in the target table, i.e.
targetMaxTime; then sourceMaxTime and targetMaxTime will be compared. If sourceMaxTime
> targetMaxTime, records ranged between sourceMaxTime and targetMaxTime will be taken

6

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
5
7

Design and Implementation Fei Xu

out from the source table, and synchronized to the target table; or, records in the source table is
consistent with records in the target table, so no update is needed; besides, there are two special
conditions should be taken into consideration:

(1) Deleted Data Synchronization. After the record is deleted by users, its IsDelete Field
value will be set to 1. When the record has been deleted from the target table, the record will be
still in the source table temporarily and actually deleted from the source table untill the change
is totally captured.

(2) Offline Change Data Synchronization. When the network is disconnected, the record
changed by the users will be stored in the SQLite database; at the same time, the State Field
value will be set to 1, which indicates that the record has not been uploaded to the server
database. Once the network connection status switches from disconnection to connection, the
offline record will be uploaded to the server; at the same time, the record’s update time will be
changed. In order to reduce the data conflict, when the offline change data have been successfully
updated to the server, all the offline records in the client table will be deleted accordingly. By
comparing sourceMaxTime and targetMaxTime, the changed data in server-side database could
be obtained and will be synchronized to the client-side database.

3.4 JSON Parsing

Since iOS5.0, Apple provides native support for JSON, i.e. NSJSONSerialization class.
Compared to the popular third-party JSON Parsing library, such as TouchJson, SBJson and
JSONKit, NSJSONSerialization highlights advantages in terms of usability and parsing
efficiency; in this sense, NSJSONSerialization class is selected to implement the parsing of
data in JSON format.

By NSJSONSerialization, Objects and arrays in JSON would be converted to the
dictionary type (NSDictionary) and array type (NSArray) respectively. Taking the measurement
items records in JSON format as an example, the records can be seen as a collection of key-
value pairs, named responseDic. There is only one key-value pair in responseDic with the key of
“CheckTemplate”, and the value is a four-object array. The value could be converted to a
variable of NSArray, named templateArr. When traversing templateArr, the elements in the
array will be converted to variables of NSDictionary. Finally, the corresponding value can be
obtained through keys. The critical code of data parsing is shown as follows:

let responseDic = NSJSONSerialization.JSONObjectWithData(responsedata!, options:
NSJSONReadingOptions.MutableContainers, error: nil) as NSDictionary

let templateArr = responseDic ["CheckTemplate"] as NSArray
for template in templateArr {
let templateDic = template as NSDictionary
let Check_Template_Name = templateDic["Check_Template_Name"] as String
let Check_Template_Code = templeteDic["Check_Template_Code"] as String }

7

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
5
7

Design and Implementation Fei Xu

Figure 4: Navigation of Measurement Items Figure 5: Graphs of Measurement Records

Figure 6: Navigation of Searched Keywords

Figure 7: Table View of Search Figure 8: Message Navigation Figure 9: Overview of Health
Results Information

8

P
o
S
(
C
E
N
e
t
2
0
1
5
)
0
5
7

Design and Implementation Fei Xu

4. Test Results

The test platform was iOS8.0, and the efficiency and convenience of the system were
tested. The navigation interface of measurement items is shown in Fig. 4. Upon clicking on the
icon, users will enter the sub-page of the corresponding item. As shown in Fig. 5, the graphs of
measurement records can help users understand their own health trends better. Fig. 6 and Fig. 7
are the keyword searching interfaces based on food names, the contents of the table view in Fig.
6 are keywords searched by users. The search results can be presented by category, as shown in
Fig. 7. The message navigation interface is shown in figure 8. An overview of health
information is shown in Fig. 9 and the latest information will be loaded after the “pull down to
refresh” behavior.

5. Conclusion

The health management system based on iOS platform was implemented. It can
completely support users to carry out personal daily health management. Such mobile
development technologies as data synchronization based on timestamp, JSON parsing and
GCD, are well integrated into the system. Of course, those technologies can improve the system
efficiency. In addition, the system is written in the form of combining Swift language with
Objective-C APIs. In the future study and research, the interactive mode could be further
improved and the measurement data graph could be presented in a more concise and intuitive
way.

References

[1] W. R. Hao, Y. H. Hsu, K. C. Chen, H. C. Li, U. Iqbal, P. A. Nguyen, et al. LabPush: A pilot study
of providing remote clinics with laboratory results via short message service (SMS) in
Swaziland, Africa–A qualitative study [J]. Computer methods and programs in biomedicine.118
(1): 77-83(2015).

[2] S. Doyle-Lindrud, Mobile Health Technology and the Use of Health-Related Mobile
Applications[J]. Clinical journal of oncology nursing.18 (6): 634-636(2014)

[3] O. El-Gayar, P. Timsina, N. Nawar, W. Eid. Mobile applications for diabetes self-management:
status and potential[J]. Journal of diabetes science and technology.7 (1): 247-262(2013)

[4] D S. Guan, Z R. Zhao. Swift Development Guide [M]. Beijing: Post and Telecom Press.9:
pp.226-237(2014). (In Chinese)

[5] K Y. Lin, M H. Tsai, U C. Gatti, J. J. C. Lin, C. H. Lee, & S. C. Kang. A user-centered
information and communication technology (ICT) tool to improve safety inspections [J].
Automation in Construction.48: 53-63(2014)

[6] Z F. Ren, M S Y. Overview of the research in model-view-controller pattern [J]. Application
Research of Computers.10: 1-4(2004). (In Chinese)

[7] H W. Zhen. Research and Design of Embedded Database Synchronization System Based on the
Mobile Terminal [D]. Guangzhou: Guangdong University of Technology (2013).(InChinese)

9

	Fei Xu12
	1. Introduction
	2. System Design
	2.1 Design Pattern of System
	2.2 System Functional Module
	3. Realization of Key Functions and Critical Technologies
	3.1 Measurement Data Graph
	3.1.1 Drawing the Coordinate Axis
	3.1.2 Drawing the Measurement Curve
	3.2 Keyword Searching Based on Food Names
	3.2.1 Table View of the Search History
	3.2.2 Table View of the Search Results
	Table 1 : Processing Methods of Table Views
	3.3 Data Synchronization Based on Timestamp
	3.3.1 Design of Synchronization Tables
	3.3.2 Capture of the Change Data
	3.4 JSON Parsing
	4. Test Results
	5. Conclusion
	References

