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1. Introduction

The decomposition of multiloop scattering amplitudes in terms of independent functions, to-
gether with the subsequent determination of the latter, is a viable alternative to the direct integra-
tion which, for non-trivial processes, may require the calculation of a prohibitively large number
of complicated Feynman integrals.

Decomposing multi-loop amplitudes in terms of independent integrals can become problem-
atic when the number of the scales of the diagrams increases, due to the exchange or to the pro-
duction of massive particles, or when a large number of external particles are scattered, or when
the morphology of the contributing diagrams becomes involved. The integrand decomposition al-
gorithm has the advantage of treating scattering amplitudes involving massive particles at the same
price of amplitudes for massless scattering. The output of the reduction procedure is the partial
fractioning of the original integrand, namely the determination of the remainders of the succes-
sive division between the numerator and (the partitions of the product of) the denominators. Upon
inte gration, the partial fraction formula correspond to rewrite the original amplitudes as a com-
bination of independent integrals. However, the result of the integrand decomposition represents
an intermediate step towards the complete amplitude reduction. In fact, additional relations among
those integrals, like integration-by-parts identities, can minimise the number of independent master
integrals (MIs) which can appear in the final formulas.

The integrand decomposition algorithm [1, 2, 3, 4, 5, 6, 7] played a key role for the automa-
tion of one-loop corrections to high-multiplicity scattering processes [8]. The extension of this
approach at two-loop and beyond [9, 10, 11, 12] has been under intense investigation. The recent
developments on the integrand side have been accompanied by important developments for novel
derivation of the integral relations needed to identify MIs [13, 14, 15, 16], as well as by progress
in the ability of computing the latter analytically [17, 18, 19] as well as numerically [20, 21]. This
vivid research has been largely due to the deeper understanding of the properties of the integrands
of Feynman graph, and of the refined algebraic and differential calculus which control them.

In these proceedings, we summarise the results of ref. [22].

2. Parallel and orthogonal space for multiloop Feynman integrals

In this contribution, we elaborate on a representation of dimensionally regulated Feynman
integrals where, for any given diagram, the number of space-time dimensions d (= 4− 2ε) is
split into parallel (or longitudinal) and orthogonal (or transverse) dimensions, as d = d‖ + d⊥
[23, 24, 25, 26, 27, 28]. Accordingly, the parallel space is spanned by the independent four-
dimensional external momenta of the diagram, namely d‖ = n−1, where n is the number of legs,
whereas the transverse space is spanned by the complementary orthogonal directions. For dia-
grams with a number of legs n ≥ 5, the orthogonal space embeds the −2ε regulating dimensions,
d⊥ = −2ε , while, for diagrams with n ≤ 4, the orthogonal space is larger and it embeds, beside
the regulating dimensions, also the four-dimensional complement of the parallel space, namely
d⊥ = (5− n)− 2ε . In this sense, the decomposition of the space-time dimensions in parallel and
orthogonal directions can be considered as adaptive, since it depends on the number of legs of the
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individual diagram.

A generic `-loop Feynman integral with n external legs in a d-dimensional Euclidean space
can be written as

Id (`)
n [N ] =

∫ ( `

∏
i=1

ddqi

πd/2

)
N (qi)

∏ j D j(qi)
. (2.1)

In the previous equation N (qi) is an arbitrary tensor numerator and the denominators D j(qi) are
quadratic in the loop momenta and can be written as

D j = l2
j +m2

j , with lα
j = ∑

i
αi jqα

i +∑
i

βi j pα
i , (2.2)

where {p1, . . . , pn−1} is the set of independent external momenta and α,β ∈ {0,±1}.
When dealing with regularisation schemes where the external kinematics is kept in four dimen-

sions, the d-dimensional loop momenta are often split into a four-dimensional part and a (−2ε)-
dimensional one,

qα
i =qα

[4] i +µ
α
i , qi ·q j = q[4] i ·q[4] j +µi j, (µi j = µi ·µ j), (2.3)

and the denominators read

Di = l2
i[4]+∑

j,k
αi jαik µ jk +m2

i , with lα

i[4] = ∑
j

αi jqα

i[4]+∑
j

βi j pα
j . (2.4)

Therefore both the numerator in (2.1) and the denominators become polynomials in `(`+9)/2
variables, namely the (−2ε)-dimensional scalar products µi j and the components of qα

i[4] with re-

spect to a four-dimensional basis of vectors {eα
i }, qα

[4] i = ∑
4
j=1 x jieα

j . Thus, in d = 4−2ε , we can
write

Id (`)
n [N ] = Ω

(l)
d

∫ `

∏
i=1

d4q[4] i
∫

∏
1≤i≤ j≤`

dµi j [G(µi j)]
d−5−`

2
N (q[4] i,µi j)

∏m Dm(q[4] i,µi j)
, (2.5)

where G(µi j) = det[(µi · µ j)] is the Gram determinant and the prefactor Ω
(`)
d is the result of the

angular integration over the angular directions.
For a number of external legs n ≤ 4, the external momenta define a d‖-dimensional subspace

with d‖ = n− 1. In these cases one can parametrise the integral (2.1) in such a way that the
number of variables appearing in the denominators is reduced to `(`+2d‖+1)/2. The numerator
will instead still have a polynomial dependence over the remaining `(4−d‖) variables. These can
however be integrated out via a straightforward expansion of the numerator in terms of orthogonal
polynomials. More in detail, if d‖ ≤ 3, one can choose 4− d‖ of the vectors in the basis {eα

i }
to lie into the subspace orthogonal to the external kinematics, i.e. ei · p j = 0 (i > d‖, ∀ j), and
ei · e j = δi j (i, j > d‖). In this way, loop momenta in d = d‖+d⊥ read

qα
i = qα

‖ i +λ
α
i , (2.6)
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qα

‖ i =

d‖

∑
j=1

x jieα
j , λ

α
i =

4

∑
j=d‖+1

x jieα
j +µ

α
i , (2.7)

where q‖ i is a vector of the d‖-dimensional space spanned by the external momenta, and λi be-
longs the d⊥-dimensional orthogonal subspace. In this parametrisation, all denominators become
independent of the transverse components of the loop momenta,

Di = l2
‖ i +∑

j,l
αi jαil λ jl +m2

i , lα

‖ i = ∑
j

αi jqα

‖ i +∑
j

βi j pα
j , λi j =

4

∑
l=d‖+1

xlixl j +µi j, (2.8)

and they depend on a reduced set of `(`+2d‖+1)/2 variables, corresponding to the `d‖ compo-
nents of qα

‖ i and the `(`+ 1)/2 scalar products λi j. In d = d‖+ d⊥, the integral (2.1) can thus be
rewritten as

Id (`)
n [N ] = Ω

(`)
d

∫ `

∏
i=1

dn−1q‖ i

∫
d

`(`+1)
2 Λ

∫
d(4−d‖)`Θ⊥

N (qi‖,Λ,Θ⊥)

∏ j D j(q‖ i,Λ)
, (2.9)

where ∫
d

`(`+1)
2 Λ =

∫
∏

1≤i≤ j
dλi j [G(λi j)]

d⊥−1−`
2 (2.10a)

defines the integral over the norm of the transverse vectors λ α
i and their relative orientations and

Θ⊥ parametrises the integral over the components of λ α
i lying in the four-dimensional space.

Remarkably, eq. (2.6) allows to express a subset of components of qα

‖i and λi j as combinations
of loop denominators by solving linear relations. Therefore, one can always build differences of
denominators which are linear in the loop momenta and independent of λi j, while the relation
between λi j and the denominators is always linear by definition, as it can be seen from eq. (2.8).

Since the denominators do not depend on the Θ⊥-components, their integration can be easily
performed. In fact, the integration over Θ⊥ amounts to a product of factorised, univariate integra-
tions of polynomial integrands, each of the type∫ 1

−1
dcosθi j(sinθi j)

α(cosθi j)
β . (2.11)

The values of α and β depend on the specific expression of the numerator. Nevertheless, these
integrals can be computed once and for all up to the desired rank and then re-used in every calcula-
tion, when occurring. These integrals can be evaluated by performing the Passarino-Veltman tensor
reduction in the orthogonal space. Alternatively, they can be evaluated by exploiting the properties
of of Gegenbauer polynomials C(α)

n (cosθ), a particular class of orthogonal polynomials over the
interval [−1,1], which obey the orthogonality relation∫ 1

−1
dcosθ(sinθ)2α−1C(α)

n (cosθ)C(α)
m (cosθ) = δmn

21−2απΓ(n+2α)

n!(n+α)Γ2(α)
. (2.12)

We observe that there are special classes of multiloop integrals, associated to factorised and
ladder topologies, whose denominators are independent of a certain number of transverse orienta-
tions λi j. For these cases, the Gegenbauer integration can be applied, besides to all Θ⊥, also to the
λi j which do not appear in the denominators.
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3. Adaptive Integrand Decomposition

3.1 Integrand recurrence relation

In the framework of the integrand reduction method [1, 3, 9, 10, 11, 29], the computation of
dimensionally regulated `-loop integrals

Id (`)
i1...ir =

∫ `

∏
j=1

ddq j

πd/2

Ni1...ir(q j)

Di1(q j) · · ·Dir(q j)
(3.1)

is rephrased in terms of the reconstruction of the integrand function as a sum of integrands with
irreducible numerators (or residues) and a subset of denominators Dik ,

Ii1...ir(q j)≡
Ni1...ir(q j)

Di1(q j) · · ·Dir(q j)
=

r

∑
k=0

∑
{i1···ik}

∆ j1··· jk(q j)

D j1(q j) · · ·D jk(q j)
. (3.2)

For an integral with an arbitrary number n of external legs, the integrand decomposition formula
(3.2) can be obtained by observing that both numerator and denominators are polynomials in the
components of the loop momenta with respect to some basis, which we collectively label as z =

{z1, . . . ,z `(`+9)
2
}. Thus, we can fix a monomial ordering and build a Gröebner basis Gi1···ir(z) of the

ideal Ji1···ir generated by the set of denominators,

Ji1···ir ≡
{ r

∑
k=1

hk(z)Dik(z) : hk(z) ∈ P[z]
}
, (3.3)

being P[z] the ring of polynomials in z. By performing the polynomial division of Ni1···ir(z) modulo
Gi1···ir(z),

Ni1···ir(z) =
r

∑
k=1

Ni1···ik−1ik+1···ir(z)Dik(z)+∆i1···ir(z) (3.4)

we obtain the recurrence relation

Ii1···ir =
r

∑
k=1

Ii1···ik−1ik+1···ir +
∆i1···ir(z)

Di1(z) · · ·Din(z)
, (3.5)

whose iterative application to the integrands corresponding to subtopologies with fewer loop prop-
agators yields to the complete decomposition (3.2).

Depending on the choice of variables z and the monomial order, the picture presented in this
section can significantly simplify. A particular convenient choice of variables turns out to be the
one presented in eq. (2.6). Indeed, as already observed, we can always express a subset of the
components of qα

‖i and λi j as a combination of denominators by solving linear relations. This set
of relations is in turn equivalent to the definition of the denominators themselves. This implies that
if we choose the lexicographic monomial order with λi j ≺ xkl for k ≤ d‖, the polynomials in the
Gröbner bases are linear in the λi j and the reducible components of qα

‖i. The polynomial division
can thus equivalently be performed by applying the aforementioned set of linear relations without
explicitly computing the corresponding Gröbner basis.
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3.2 Divide, integrate and divide

When dealing with an integral with n≤ 4 external legs, we can use the d = d‖+d⊥ parametri-
sation which removes the dependence of the denominators on the transverse components of the
loop momenta. Thus, if we indicate with z the full set of `(`+9)/2 variables

z ={x‖ i,x⊥ i,λi j}, i, j = 1, . . . `, (3.6)

where x‖ i(x⊥ i) are the components of the loop momenta parallel(orthogonal) to the external kine-
matics, the denominators are reduced to polynomials in the subset of variables

τ ={x‖,λi j}, τ ⊂ z, (3.7)

so that the general r denominators integrand has the form

Ii1...ir(τ,x⊥)≡
Ni1...ir(τ,x⊥)

Di1(τ) · · ·Dir(τ)
. (3.8)

This observation suggests an adaptive version of the integrand decomposition algorithm, where the
polynomial division is simplified by working on the reduced set of variables τ and the expansion of
the residues in terms of Gegenbauer polynomials allows the systematic identification of spurious
terms. The algorithm is organised in three steps:

1. Divide: we adopt lexicographic ordering λi j ≺ x‖ for the τ variables and we divide the nu-
merator Ni1...ir(τ,x⊥) modulo the Gröebner basis Gi1···ir(τ) of the ideal Ji1···ir(τ) generated
by the denominators,

Ni1...ir(τ,x⊥) =
r

∑
k=1

Ni1...ik−1ik+1...ir(τ,x⊥)Dik(τ)+∆i1...ir(x‖,x⊥). (3.9)

As a consequence of the specific monomial ordering, the residue ∆i1...ir can depend on the
transverse components x⊥ i, which are left untouched by the polynomial division, as well as
on x‖ i but not on λi j that are expressed in terms of denominators and irreducible physical
scalar products. Conversely, the quotient, from which the numerators corresponding to the
subdiagrams to be further divided are obtained, still depends on the full set of loop variables.
As we explained at the end of sec. 3.1, the Gröbner basis does not need to be explicitly
computed, since, with the choice of variables and the ordering described here, the division is
equivalent to applying the set of linear relations described above.

2. Integrate: by writing the contribution of the residue ∆i1...ir to the integral in the d = d‖+d⊥
parametrisation, we can integrate over transverse directions through the expansion of ∆i1...ir

in terms of Gegenbauer polynomials, which sets to zero spurious terms and reduce all non-
vanishing contributions to monomials in λi j. It should be noted that, due to the angular
prefactors produced by the integration of the transverse directions, the integrated residue

∆
int
i1...ir(τ) =

∫
d(4−d‖)`Θ⊥∆i1...ir(τ,Θ⊥) (3.10)

is, in general, a polynomial in τ whose coefficients depend explicitly on the space-time
dimension d. The full set of ∆int

i1...ir(τ), obtained by iterating on each subdiagram numerator
the polynomial division and the integration over the transverse space, provides already a
spurious term-free representation of the integrand (3.2).
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3. Divide: however, since ∆int
i1...ir(τ) depends on the same variables as the denominators Dik(τ),

we can perform a further division modulo the Gröebner basis Gi1···ir(τ) and get

∆
int
i1...ir(τ) =

r

∑
k=1

N int
i1...ik−1ik+1...ir(τ)Dik(τ)+∆

′
i1...ir(x‖), (3.11)

where, due to the choice of lexicographic ordering, the new residue ∆′i1...ir(x‖) can only de-
pend on x‖. Therefore, this additional polynomial division allows us to obtain an integrand
decomposition formula (3.2), where all irreducible numerators are function of the compo-
nents of the loop momenta parallel to the external kinematics. As in the previous case, the
division modulo Gröbner can equivalently be implemented via a set of linear relations.

The interpretation of the monomials appearing in the residues ∆′i1···ir(x‖) in terms of a basis of tensor
integrals can be additionally simplified by making use of the Gram determinant G[λi j] (or G[µi j] for
cases with more than four external legs, where x‖ ≡ x). In fact, as it can be easily understood from
(2.5) and (2.10a), G[µi j] and G[λi j] can be interpreted as operators that, when acting on an arbitrary
numerator of a d-dimensional integral, produce a dimensional shift d → d + 2. Therefore, Gram
determinants can be used in order to trade some of the d-dimensional tensor integrals originating
from the residues with lower rank integrals in higher dimensions.

3.3 Integrate and divide

In the three-step algorithm divide-integrate-divide, outlined in the previous section, the inte-
gration over the transverse angles is performed after the integrand reduction, namely after deter-
mining the residues. This first option follows the standard integrand reduction procedure, where the
spurious monomials are present in the decomposed integrand, although they do not contribute to
the integrated amplitude. Alternatively, if the dependence of the numerators on the loop momenta
is known, then the integration over the orthogonal angles can be carried out before the reduction.
Within this second option, which we can refer to as integrate-divide, after eliminating the orthog-
onal angles from the integrands, the residues resulting from the polynomial divisions contain only
non-spurious monomials. In order to integrate before the reduction, the dependence of the numer-
ator on the loop momenta should be either known analytically or reconstructed semi-analytically
[30, 31]. Such situation may indeed occur when the integrands to be reduced are built by automatic
generators or they emerge as quotients of the subsequent divisions.

4. Applications

We summarise the results obtained from the application of the adaptive integrand decompo-
sition (AID) at one loop in Table 1. In the first column, τ labels the variables the denominators
depend on. ∆i1 ··· in indicates the residue obtained after the polynomial division of an arbitrary n-
rank numerator and ∆int

i1 ··· in the result of its integral over transverse directions. ∆
′
i1 ··· in corresponds

to the minimal residue obtained from a further division of ∆int
i1 ··· in . In the figures, wavy lines indi-

cate massless particles, whereas solid ones stands for arbitrary masses. As an exceptional property
of one-loop integrands, we find that by working with τ variables, all unitarity cuts are reduced to
zero-dimensional systems. Moreover, we show that the last step of the algorithm, i.e. the further

6
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Ii1 ··· in τ ∆i1 ··· in ∆int
i1 ··· in ∆

′
i1 ··· in

Ii1i2i3i4i5
1 − −

{x1,x2,x3,x4,µ
2} {1} − −

Ii1i2i3i4
5 3 1

{x1,x2,x3,λ
2} {1,x4,x2

4,x
3
4,x

4
4} {1,λ 2,λ 4} {1}

Ii1i2i3
10 2 1

{x1,x2,λ
2} {1,x3,x4,x2

3,x3x4,x2
4,x

3
3,x

2
3x4,x3x2

4,x
3
4} {1,λ 2} {1}

Ii1i2
10 2 1

{x1,λ
2} {1,x2,x3,x4,x2

2,x2x3,x2x4,x2
3,x3x4,x2

4} {1,λ 2} {1}

Ii1i2
10 4 3

{x1,x2,λ
2} {1,x1,x3,x4,x2

1,x1x3,x1x4,x2
3,x3x4,x2

4} {1,x1,x2
1,λ

2} {1,x1,x2
1}

Ii1
5 1 −

{λ 2} {1,x1,x2,x3,x4} {1} −

Table 1: Residue parametrisation for irreducible one-loop topologies.

polynomial division after angular integration over the transverse space, provides an implementation
of the dimensional recurrence relations at the integrand level.

Beside revisiting the one-loop, we applied the AID in order to determine the universal parametri-
sation of the residues appearing in the integrand decomposition (3.2) of the three eight-point topolo-
gies shown in fig. 1a-1c. The results obtained are valid for arbitrary (internal and external) kine-
matic configuration. For the complete results of the two-loop decomposition, we refer the reader
to the ref. [22].

q1 q2
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(a) I P
1234567891011

q1 q2

p1

p2

p8

p7
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3

4 5 6
7

8
9
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11

(b) I NP1
1234567891011
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p1

p2 p6
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p8
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3

4 5
6

7

8

9

10
11

(c) I NP2
1234567891011

Figure 1: Maximum-cut topologies

Furthermore, we applied the AID to the leading color contribution to the two-loop all-plus five-
gluon amplitude [32, 33, 34, 35, 36, 37, 38], which, after the first step of the division algorithm,
admits a decomposition of the form

A(2)(1+,2+,3+,4+,5+) =
∫ ddq1

πd/2

ddq2

πd/2

{ ∆

(
4

5
1

2

3

)
D1 D2 D3 D4 D5 D6 D7 D8

+

∆

(
4

5
1

2

3

)
D1 D2 D3 D4 D5 D6 D7

+

∆

(
4

5
1

2
3

)
D1 D2 D3 D5 D6 D7 D8

+

∆

(
4

5
1

2

3

)
D1 D3 D4 D5 D6 D7 D8

+

∆

(
4

5
1

2

3

)
D1 D2 D4 D5 D6 D7D8
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+

∆

(
4

5
1

2
3

)
D1 D2 D3 D5 D6 D7

+

∆

(
4

5
1

2

3

)
D1 D3 D4 D5 D6 D7

+

∆

(
4

5
1

2

3

)
D1 D2 D4 D5 D6 D7

}
+ cycl. perm. (4.1)

The residue have been obtained from numerators constructed through Feynman diagrams in Feyn-
man gauge, including both gluon and ghost loop contributions. The relevant Feynman graphs, a
selection of which is shown in fig. 2, have been generated by using FEYNARTS [39] and FEYN-
CALC [40, 41]. The expression of the residues have been numerically checked against the results
of [32]. The integration of the transverse directions of both four-point and factorised topologies and
the further division of the integrated residues may lead to a new representation of the amplitude,
whose discussion is, nevertheless, beyond the scope of this report.

✷

Figure 2: Selection of Feynman diagrams contributing to the five-gluons amplitude. Curly lines
represent gluons and dashed ones indicate ghosts.

5. Conclusions

Owing to the representation of Feynman integrals in parallel and orthogonal space, numerators
and denominators of integrands appear to depend on different sets of integration variables. By
exploiting the different origin and role of these variables, we engineered a novel variant of the
integrand decomposition algorithm, defined as adaptive integrand decomposition (AID), where the
multivariate polynomial division is simplified and the integration over transverse space variables
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can be efficiently carried out by means of Gegenbauer polynomials. Orthogonality relations for
Gegenbauer polynomials detect and annihilate the so called spurious integrals at any loop order, and
can be used any time that a certain subset of integration variables do not appear in the denominators,
as it happens also in the case of factorised diagrams and ladder topologies.

As a result of the AID, each amplitude is written in terms of a set of integrals which, beside
the scalar ones, contains tensor integrals with irreducible scalar products depending on the parallel
directions and on the lengths of the transverse vectors only. In addition, we have shown that
the integration over the transverse directions leads to integrals which can be subject to additional
polynomial divisions, which in some cases correspond to dimension-shifting recurrence relations
implemented at the integrand level.

We revisited the one-loop integrand decomposition, showing that it is completely determined
by the maximum-cut theorem in different dimensions. Furthermore, we considered the complete
reduction of two-loop planar and non-planar integrals for arbitrary kinematics, classifying the cor-
responding residues and identifying the independent integrals contributing to eight-particle scatter-
ing amplitudes. The proposed algorithm can be simply extended to higher loops.

In view of the development of automated tools for the evaluation of multi-loop amplitudes,
the AID can be used as an intermediate reduction phase to achieve an expression in terms of an
independent set of integrals. The latter can be further simplified by means of relations arising from
additional symmetries that can occur, such as integration-by-parts identities and color-kinematics
duality.
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