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1. Introduction

In recent years there has been remarkable technological progress in the computation of higher-
order corrections to various high-energy processes. The main driving force has been the tough
demands from the current LHC experiments, where vast amount of (difficult) computation is indis-
pensable for extracting information on important physics quests. Indeed many contributions in this
direction have been presented in this workshop.

In this talk we are concerned with a slightly different subject, the higher-order computation of
the heavy quarkonium spectrum. The motivation to deal with this physical system is as follows.
Heavy quarkonium (such astt̄, bb̄, cc̄ andbc̄) is unique among various strongly interacting sys-
tems, in the sense that properties of individual hadrons can be predicted purely within perturbative
QCD. Observables such as its spectrum, decay width, or level transition rates have been computed
and tested against experimental data or compared with lattice QCD computations. Through such
procedure we can test perturbative QCD under clean environment and gain deeper understanding
on predictability and proper usage of perturbative QCD in relation to non-perturbative effects. At
the same time we can determine the fundamental parameters of the standard model, such as the
heavy quark masses and the strong coupling constant, with high accuracy. (See [1] and references
therein.)

In modern computation of higher-order corrections to observables of heavy quarkonium, two
theoretical foundations play crucial roles. One is the effective field theory (EFT) framework, such
as potential-NRQCD (pNRQCD) [2] or velocity-NRQCD (vNRQCD) [3]. The other is the com-
putational technology called threshold expansion technique [4]. These theoretical tools enable
organization of computations of higher-order corrections in a systematic manner.

In this review we explain, to those who have interests in higher-order computations in general
but are non-experts of bound-state physics, the following subjects related to the recent computation
of the heavy quarkonium spectrum in perturbative QCD: In Sec. 2, Recent technological devel-
opments in higher-order computation; In Sec. 3, Physics predictions and applications; In Sec. 4,
Current challenge towards analytic evaluation of the 3-loop static QCD potential. Summary is
given in Sec. 5.

2. Computation of quarkonium spectrum up to NNNLO

In this section we explain some aspects of the recent technological developments in the com-
putation of the heavy quarkonium energy levels. The state-of-the-art computation is at the next-
to-next-to-next-to-leading order (NNNLO) level [5, 6, 7]. The calculation uses pNRQCD EFT for
systematically organizing the perturbative expansions inαs.

This EFT describes interactions of a non-relativistic quantum mechanical system (dictated
by the Schrödinger equation) with ultrasoft gluons, which is organized in multipole expansion.1

Hence, the Lagrangian of pNRQCD is given as expansions inr⃗ and 1/m in the following form:

LpNRQCD= S†(i∂t − ĤS
)
S+Oa†(iDt − ĤO

)ab
Ob+gS† r⃗ · E⃗aOa+ . . . . (2.1)

1This is in analogy to classical electrodynamics, in which electric field with a long wave-length (compared to
the scale of charge distribution) can be expressed generally as a superposition of electric field generated by electric
multipoles.
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S andOa represent, respectively, color-singlet and octet heavy quark-antiquark (QQ̄) composite
fields.Ea denotes the color-electric field.̂HS andĤO denote the quantum mechanical Hamiltonians
for the singlet and octet states, respectively, and dictate the main binding dynamics of theQQ̄ states.
(The zeroth-order Lagrangian in expansion inr⃗ just gives the Schrödinger equations forSandOa

as the equation of motion.)̂HS is currently known up to NNNLO [8] in non-relativistic expansion
(that is, double expansion in 1/mandαs).

The energy levels of the heavy quarkonium states are given as the positions of poles of the
full propagator of the singlet fieldS in pNRQCD. The full propagator, in multipole expansion in

Figure 1: First two diagrams for the full propagator ofS in multipole expansion in pNRQCD.

r⃗, is given by the diagrams in Fig.1. The first diagram represents the zeroth-order propagator
of S, which is simply 1/[E − ĤS+ i0]. Hence, its pole positions can be computed by ordinary
perturbation theory of quantum mechanics usingĤS up to NNNLO. The LO Hamiltonian is that of
the Coulomb system. The perturbative corrections are given by the familiar formula:

δEn = ⟨n|(ĤS)NLO |n⟩+∑
i ̸=n

| ⟨n|(ĤS)NLO | i ⟩ |2

En−Ei
+ · · · . (2.2)

Each term of the perturbative corrections can be straightforwardly converted to an infinite sum form
using a known infinite sum representation of the Coulomb Green function.

The second diagram represents emission and reabsorption of an ultrasoft gluon via dipole
interaction in eq. (2.1). This contribution is the same as Lamb shift in QED and contains UV
divergences. The divergences are canceled by IR divergences contained in the Hamiltonian at
NNNLO, (ĤS)N3LO, such that the sum of the two diagrams is finite. We now explain key aspects in
the evaluation of contribution of each diagram in Fig.1.

2.1 Breakdown of infinite sum to finite sums (and known transcendental numbers)

Let us explain the new technology to evaluate infinite sums in the evaluation of the first dia-
gram. We take the following sum as an example:

A(n, ℓ) =
∞

∑
k=1

(n− ℓ+k−1)!
(n+ ℓ+k)! k3 . (2.3)

This sum appears as a part of the NNLO corrections to the spectrum. We have devised a new
method to reduce this type of infinite sums to a combination of transcendental numbers [such as
ζ (2) = π2/6, ζ (3), etc.], rational numbers and a finite sum [6].
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By partial fractioning in terms of the magnetic quantum numberm, one may write

(n− ℓ+k−1)!
(n+ ℓ+k)!

=
ℓ

∏
m=−ℓ

1
n+k+m

=
ℓ

∑
m=−ℓ

R(ℓ,m)

n+k+m
, (2.4)

where the residue is given by

R(ℓ,m) =
(−1)ℓ−m

(ℓ+m)!(ℓ−m)!
. (2.5)

Now we can reduce the sum eq. (2.3) using eq. (2.4) and

∞

∑
k=1

1
(k+ i)k3 =

ζ (3)
i

− ζ (2)
i2

+
S1(i)

i3
. (2.6)

[S1(i) = ∑i
k=1

1
k denotes the harmonic sum.]

To evaluate2 sums such as the one in eq (2.6), there exists a general algorithm [9] (see also
[10]) which can evaluate, e.g.,

f (i) =
∞

∑
k=1

∞

∑
m=1

(−1)m−k

(k+ i)2(k+m+ i)(m+2i+1)
(2.7)

by reducing it to a combination of nested sums

Z(nmax;{b j};{λ j}) = ∑
nmax>n1>n2>···>nN>0

λ n1
1 λ n2

2 · · ·λ nN
N

nb1
1 nb2

2 · · ·nbN
N

, b j ∈ N, λ j ∈ roots of unity, (2.8)

wherenmax = i or ∞. In fact, as a factor in the denomanator on the RHS of eq. (2.7) any linear
polynomial of internal and external indices can appear, while any roots of unity can appear in the
numerator. The algorithm utilizes the fact that the summand off (i) can be brought to a form which
is invariant under the shift of the indices,i → i+∆i, k→ k+∆k, m→m+∆m. Then it is easy to see
that, by taking a difference equation off (i), the bulk of the sum gets canceled and only “surface
terms” with one summation less remain. By repeating this procedure recursively and summing
back, one can renderf (i) to a combination of nested sums, which can be evaluated in terms of
known transcendental numbers, rational numbers and finite sums.

2.2 Algebraic derivation of US correction (QCD Bethe log)

We show how to compute the second diagram of Fig.1 algebraically [6]. The diagram corre-
sponds to the one-loop self-energy of the singlet fieldSand is given by

Eus
nℓ =−ig2µ2ε TF

NC

∫ ∞

0
dt
⟨⃗

r · E⃗a(t ,⃗0) exp
[
−i(Ĥ(d)

O −E(d)
n,C)t

]
r⃗ · E⃗a(0,⃗0)

⟩
nℓ
. (2.9)

⟨· · ·⟩nℓ denotes the expectation value taken with respect to the (external) energy eigenstate(n, ℓ)
of the singlet HamiltonianH(d)

S in d dimensions. We employ the dimensional regularization with

2A Mathematica package “Wa”, which implements this summation algorithm, is available athttp://
www.tuhep.phys.tohoku.ac.jp/∼program/ with examples and instructions.
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d=D−1= 3−2ε . E(d)
n,C =−C2

F α2
s

4n2 m+O(ε) denotes the (leading-order) energy eigenvalue ofH(d)
S .

We need to keepε = (3−d)/2 non-zero until we extract the UV divergences ofEus
nℓ explicitly.

The correlation function of the color electric field can be evaluated using the gluon propagator
of the ordinary Feynman rules as⟨

Eia(t ,⃗0)E ja(0,⃗0)
⟩
=−iδ aa

∫
dDk
(2π)D

eik0t

k2+ i0

(
kik j −k2

0δ i j ) + O(αs). (2.10)

After integrating overt we obtain

Eus
nℓ =

1
2

CFg2µ2ε 1−d
d

C(d)

⟨
r i
(

Ĥ(d)
O −E(d)

n,C

)d
r i
⟩

nℓ
. (2.11)

C(d) is expressed in terms of Gamma functions and includes 1/ε pole due to the UV divergence of
the one-loop integral. Therefore, we need the other factors up to orderε.

We may expand(Ĥ(d)
O −E(d)

n,C)
3−2ε ≈ (Ĥ(d)

O −E(d)
n,C)

3[1−2ε log(Ĥ(3)
O −E(3)

n,C)] and write

µ2ε
⟨

r i
(

Ĥ(d)
O −E(d)

n,C

)d
r i
⟩

nℓ
=

⟨
X−2ε r i

(
Ĥ(3)

O −E(3)
n,C

)3
log

(
Ĥ(3)

O −E(3)
n,C

µ

)
r i

⟩
nℓ

+O(ε2) (2.12)

with

X = r i
(
Ĥ(d)

O

)3
r i − 3

2

{
Ĥ(d)

S , r i
(
Ĥ(d)

O

)2
r i
}
+ 3

2

{(
Ĥ(d)

S

)2
, r iĤ(d)

O r i
}
− 1

2

{(
Ĥ(d)

S

)3
,⃗ r 2
}
, (2.13)

where we have replacedE(d)
n,C by the singlet Hamiltonian inside the expectation value, taking into

account ordering of the operators. We can then use the commutation relation[r i , p j ] = iδi j and

⟨n| [Ĥ(d)
S ,O] |n⟩ = 0, which hold for generald, to simplify X, and we obtain an operator̂Hus, in

which the 1/ε terms and finite terms are explicitly separated:

Eus
nℓ =

⟨
Ĥus⟩

nℓ−
2CFαs

3π

⟨
r i
(

H(3)
O −E(3)

n,C

)3
log

(
H(3)

O −E(3)
n,C

µ

)
r i

⟩
nℓ

. (2.14)

The 1/ε part of Ĥus exactly cancels the 1/ε part of (ĤS)N3LO. The second term on the RHS
represents the QCD analogue of the “Bethe logarithm” in Lamb shift.

This is the algebraic derivation of the second diagram, and the result agrees with the previously
known result. The original derivation [8] was based on diagrammatic analyses, which requires
manipulation of vertices and propagators among a set of Feynman diagrams, using the equation of
motion, etc. In general the algebraic derivation would be more tractable for non-experts.

3. Physics predictions

The scale dependence of the energy level of the lowest-lying spin-one quarkonium state is
shown in Fig.2. The displayed figure is the case of the (would-be)tt̄(1S) state, and in the cases
of the other heavy quarkonium 1Sstates the dependences are qualitatively similar. As can be seen,
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Figure 2: Renormalization-scale dependence of the energy level of thett̄(1S) state.

better stability is obtained as we include higher-order corrections. One can also verify that the
perturbative series is converging fairly well around the scale where theµ dependence becomes
flat (minimal-sensitivity scale). It is crucial to use a short-distance mass of the heavy quark to
realize these nice features, and in particular theMS mass shows the best stability and convergence
[11]. (In this regard, the recent computation of the four-loop pole-MS mass relation [12] is highly
appreciated.)

We show in Fig.4 a (preliminary) prediction for the bottomonium spectrum in perturbative
QCD (red points) compared with the experimental data (black points). Experimental errors are

Figure 3: Comparison of the prediction of bottomonium spectrum by perturbative QCD and the experimen-
tal data. The prediction does not include non-zero charm-mass effects inside loops. (This figure was made
by G. Mishima.)

smaller than the black points, while theoretical error estimates are shown by red bars. The bot-
tom quarkMS massmb is fixed on theϒ(1S) state and the value ofαs(MZ) to the PDG value.
The prediction [13] does not include non-zero charm-mass effects inside loops in this figure. The
prediction is in reasonable agreement with the experimental data, with essentially onlymb as the
adjustable input parameter.

We can compare the perturbative QCD predictions and the experimental data for the 1Senergy

5
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Figure 4: Determination ofMS massesmc andmb [14]. Horizontal (vertical) axes representmc,b (mass
of charmonium/bottomonium 1S state). Horizontal narrow bands show the experimental data with errors.
Diagonal bands show the perturbative QCD predictions with errors as functions ofmc,b. Determinedmc,b

with error bars are shown below the plot. For comparison, the PDG values are also shown.

levels and determine3 the MS masses of charm and bottom quarks,mc and mb. This is shown
in Fig. 4. From the average of the values determined from the vector and scalar 1S states, we
obtain [14] mc = 1246±2(d3)±4(αs)±23(h.o.) MeV andmb = 4197±2(d3)±6(αs)±20(h.o.)±
5(mc) MeV, which agree with the current Particle Data Group values. The error estimates are based
on standard methods for estimating perturbative uncertainties. Thus, the agreement suggests that
non-perturbative corrections to these systems are (at most) comparable in size with the perturbative
uncertainties, which is also consistent with renormalon analyses.

4. Challenge: Analytic evaluation ofa3 (3-loop QCD potential)

Currently the three-loop correction to the static QCD potential is known only numerically [15].
There remain three necessary expansion coefficients inε of the master integrals whose analytical
values are still unknown [16]. One of them is an expansion coefficient of the integral given by the
diagram in Fig.5. Let us explain the status of this coefficient. This expansion coefficient is reduced

Figure 5: Diagram whose expansion coefficient is not known analytically. Single lines denote relativistic
massless propagators, while double lines represent static propagators.

3In this analysis we have included non-zero charm-mass effects inside loops for the bottomonium 1Sstates.
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to the form

M(1)
40 = ∑

k

rk Z
(

∞;{b(k)j };{λ (k)
j }
)
+C0 , (4.1)

namely, as a sum of generalized multiple zeta values (MZVs) (with rational number coefficientsrk)
and an unknown constantC0. Here, generalized MZV is defined as

Z(∞;{b j};{λ j}) = ∑
n1>n2>···>nN>0

λ n1
1 λ n2

2 · · ·λ nN
N

nb1
1 nb2

2 · · ·nbN
N

, b j ∈ N, λ j ∈ C. (4.2)

The following integral includes the constantC0 whose value has not been expressed in terms
of MZVs up to now:∫ Λ

0
dx

1
√

x
√

1−4x

∫ x

1/4
dy

1+2y

y
√

1−y
√

1−4y

∫ y

1
dz

Arctanz

z
√

1−z

=C2 log2 Λ+C1 logΛ+C0+O
( 1

Λ
logn Λ

)
as Λ → ∞. (4.3)

We consider the limitΛ → ∞ and extract the coefficientsC0,C1,C2 as above.C2 andC1 can be
expressed by MZVs, which is a result of a non-trivial analysis.4 The constantC0 has not been
expressed by MZVs and its nature is still unknown. Similar nested integrals with square roots have
also been investigated in this workshop. We would like to invite our colleagues to reveal the nature
of C0.

5. Summary

As demonstrated in this talk, non-relativistic bound state theory for QCD (also for QED) has
become fairly mature and amenable to a textbook-level understanding and computation. A number
of recent computations use pNRQCD EFT to organize perturbative expansions systematically.

In the computation of NNNLO heavy quarkonium spectrum we applied a new technology for
evaluating multiple sums (which may be useful in other applications also) and performed all com-
putation arithmetically in contrast to the previous approach which involved diagrammatic analyses.
We also note that after many years of endeavor the computation of the NNNLO corrections to the
quark pair-production cross section near threshold ine+e− collisions has recently been completed
[17]. One example of the remaining theoretical challenges is an analytic evaluation of the three-
loop correction to the static QCD potential. It involves evaluation of a new type of nested integral
with square roots.

We demonstrated some physics applications of the NNNLO heavy quarkonium spectrum. The
prediction shows stability and convergence expected for a legitimate perturbative prediction. The
prediction of the bottomonium spectrum is in reasonable agreement with the experimental data,
in particular by fixingαs(MZ) at the PDG value, withmb as the only adjustable input parame-
ter. We further determined theMS massesmc and mb by comparing the experimental data for
J/ψ(1S),ηc(1S) andϒ(1S),ηb(1S) masses with the predictions of perturbative QCD. The obtained
values of each mass from the different spin states are consistent with each other, as well as with

4One can show this using the Cauchy theorem and pseudo-elliptic integrals.
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the current PDG value which is determined from a wide variety of observables. These features
suggest that non-perturbative corrections to these systems are comparable in size with the pertur-
bative uncertainties and therefore under good theoretical control. Considering the role played by
perturbative QCD in the present and future precision physics, this observation is fairly encouraging.
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