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We present a calculation of the next-to-leading order QCD corrections to the production of Higgs
boson pairs in gluon fusion keeping the full dependence on the mass of the top quark. The vir-
tual corrections, involving two-loop integrals with up to four mass scales, have been calculated
numerically and we present an efficient algorithm to obtain accurate results of the virtual ampli-
tude using numerical integrations. Taking the top quark mass into account we obtain significant
differences compared to results obtained in the heavy top limit.
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1. Introduction

Studying the production of Higgs boson pairs at the LHC is important to scrutinize the mech-
anism of electroweak symmetry breaking, because this process involves self-interactions of three
Higgs bosons and a measurement of this coupling can be directly related to the potential of the
Higgs field.

The dominant production mechanism for Higgs boson pairs at the LHC is gluon fusion me-
diated by a top-quark loop. The cross section of this process has first been calculated at leading
order (LO) in Ref. [1, 2]. Approximated next-to-leading order (NLO) results have been obtained in
Ref. [3] using the Born-improved Higgs Effective Field Theory (HEFT). In this approximation the
NLO corrections are calculated in the heavy top limit, supplemented with a re-scaling by a factor
of B(mt)/B(mt →∞), where B is the LO result. Using this approximation also NNLO [4, 5, 6] and
resummed [7, 8] results have been calculated recently.

In contrast to single Higgs production, it is expected that the heavy top-quark approximation
gives only a poor description of Higgs boson pair production since this process peaks in phase space
regions where the top-quark mass is not the largest energy scale. Therefore, different methods to
improve on the HEFT result emerged during the last few years. In Refs. [9, 10] the mt → ∞ limit
has only been used to calculate the virtual corrections, whereas the full dependence on mt has been
kept in the real radiation contribution. Another approach has been applied in Refs. [11, 12, 13],
where an expansion in 1/m2

t has been used to improve the prediction for the cross section. In
Ref. [12], see also the presentation in Ref. [14], this expansion has also been used to improve the
predictions for the NNLO contributions. These two methods for improvements on the HEFT result
indicated that the top-quark mass effects should give a contribution of O(10%) at NLO.

In this talk we present the NLO corrections obtained in Ref. [15], where the full dependence
on the top-quark mass has been kept throughout the calculation. The two-loop integrals appear-
ing in the virtual corrections have been calculated numerically using an interface to the program
SECDEC [16].

This calculation is a first step towards the construction of an automated tool for the calculation
of general multi-loop amplitudes, based on the programs GOSAM [17, 18] and SECDEC. The
progress on these developments along with details on the tools used for the calculation have been
presented in the talk of S. Jones [19]. In the following, we therefore give only a brief overview of
these tools and we focus on details of the numerical evaluation of the virtual amplitude and on the
phenomenological results.

2. Calculation

2.1 Computational Setup

Representative Feynman diagrams contributing Higgs boson pair production in gluon fusion
are shown in Fig. 1. The amplitude of the underlying 2→ 2 process

g(p1)+g(p2)→ h(p3)+h(p4) (2.1)

can be decomposed into two form factors F1, F2 as

Mab = δabε
µ

1 ε
ν
2 Mµν , M µν = F1(s, t,m2

h,m
2
t ,d) T µν

1 +F2(s, t,m2
h,m

2
t ,d) T µν

2 , (2.2)
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Figure 1: Representative Feynman diagrams for the LO, virtual, and real emission contributions.

where ε
µ

1 , εν
2 are the polarization vectors of the gluons with color indices a, b, and with the Man-

delstam variables s = (p1 + p2)
2, t = (p3− p1)

2 and u = (p3− p2)
2. The two tensor structures

are

T µν

1 = gµν −
pν

1 pµ

2
p1 · p2

, (2.3)

T µν

2 = gµν +
m2

h pν
1 pµ

2 −2(p1 · p3) pν
3 pµ

2 −2(p2 · p3) pµ

3 pν
1 +2(p1 · p2) pν

3 pµ

3

p2
T (p1 · p2)

(2.4)

with p2
T = (tu−m4

h)/s. To calculate the virtual amplitude, we constructed a multi-loop extension
of the program GOSAM which, after generating the Feynman diagrams using QGRAF [20], uses
FORM [21, 22] to apply projectors onto the two form factors and for further processing of the
expressions. To facilitate the use of reduction programs, we created an interface to REDUZE [23]
and matched all loop integrals to integral families, leading to expressions for F1 and F2 containing
∼10.000 integrals with up to 7 propagators and 4 inverse propagators. These expressions have been
validated by comparing them to a second implementation entirely based on QGRAF and REDUZE.

The reduction of the integrals to master integrals turned out to be very challenging and we
therefore fixed the numeric values mt = 173GeV and mh = 125GeV during reduction, thus reduc-
ing the number of appearing mass scales by one. With this simplification, the reduction to masters
has been obtained for all the planar integrals, but we didn’t achieve a full reduction for the non-
planar 6 and 7 propagator integrals using the programs REDUZE [23], FIRE [24] or LITERED [25].
For simplifying the numerical evaluation of these integrals, we therefore rewrote the inverse prop-
agators in terms of scalar products, leading to non-planar 7 propagator integrals of up to rank 4.

After the partial reduction, the expressions for the amplitude contained 145 planar master inte-
grals as well as 70 mostly unreduced non-planar tensor integrals, leading to a total of 327 integrals
when including integrals that differ by a crossing. We calculated these integrals using the pro-
gram SECDEC, which decomposes the integrals into sectors leading to finite Feynman parameter
integrals at each order in ε = (4− d)/2, where d is the dimension of space-time. We modified
SECDEC such that the integrands of latter integrals are written to a library, which allows us to call
them directly from our code for the amplitude evaluation and we dynamically adjust the number
of sampling points as discussed in the next section. For the numerical integration we use a quasi-
Monte Carlo algorithm based on a rank-one lattice rule [26, 27], which for sufficiently smooth
integrands obeys a scaling ∆ ∝ n−1 of the integration error with the number of sampling points.
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The real emission contribution involves up to one-loop pentagon diagrams with a top-quark ap-
pearing in the loop. The corresponding amplitudes have been generated using the program GOSAM

and we used the dipole subtraction algorithm [28] to deal with the infrared singularities.

2.2 Numerical Evaluation of the Virtual Amplitude

After form factor decomposition and partial reduction, the virtual amplitude MV is determined
by the two form factors F1 and F2, which are a linear combination of 327 two-loop integrals I j,

Fi(s, t,m2
t ,m

2
t ,ε) = ∑

j
fi, j(s, t,m2

t ,m
2
t ,ε) · I j(s, t,m2

t ,m
2
t ,ε), (2.5)

with multi-variate rational functions fi, j as coefficients. For the numeric calculation of the integrals,
it is convenient to factor out an arbitrary mass scale M as well as a prefactor c j(ε) containing the
Γ-functions arising from Feynman parametrization and integration of the loop momenta. This leads
to

I j(s, t,m2
t ,m

2
t ;ε) =

(
µ2

M2

)2ε

c j(ε)Mm j Î j

(
s

M2 ,
t

M2 ,
m2

t

M2 ,
m2

t

M2 ;ε

)
, (2.6)

where µ is the mass scale of dimensional regularization and the exponent m j is given by the mass
dimension of integral I j. After applying sector decomposition using SECDEC, each loop integral
Î j is decomposed into multiple sectors s, which can be expanded in ε , leading to a Laurent series

Î j

(
s

M2 ,
t

M2 ,
m2

t

M2 ,
m2

t

M2 ;ε

)
= ∑

s
∑

e>emin
s

ε
e Î j,s,e

(
s

M2 ,
t

M2 ,
m2

t

M2 ,
m2

t

M2

)
, (2.7)

and the integrals Î j,s,e can be integrated numerically over the Feynman parameter space. Rearrang-
ing the terms of Eqs. (2.5)-(2.7), we can write the two form factors as

Fi(ε) =

(
µ2

M2

)2ε

·∑
j,s,e

Î j,s,e ·ai, j,e(ε)︸ ︷︷ ︸
Ai

(2.8)

and expand the coefficients

ai, j,e(ε) = ε
eMm j c j(ε) fi, j(ε) (2.9)

up to O(ε0), where the dependence of the form factor, integral and coefficients on s, t,m2
t and m2

t

has been suppressed. This form allows us to obtain the results of the two form factors (including
their poles in ε), while computing each integral only once. Furthermore, applying a similar proce-
dure to the calculation of the LO amplitude and mass counter terms, Eq. (2.8) allows us to vary the
renormalization scale µR without recomputing Ai.

Sector decomposition allows us to write the amplitude in terms of finite integrals which we
can calculate numerically, however, it also leads to a significant increase in the number of integrals.
After decomposition and expansion in ε , the 327 integrals I j are replaced by∼11.000 integrals Î j,s,e.
With this large number of integrals, it is not advisable to evaluate each integral with a pre-defined
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accuracy or number of sampling points. Assuming that each integral gave the same contribution to
the amplitude, each integral would be required with a precision of O(10−4) to obtain an amplitude
result with an accuracy of 1%. However, cancellations between various integrals can spoil the
accuracy of the amplitude result and a significant increase in the precision for these integrals might
be required. On the other hand, one wants to avoid calculating integrals to very high accuracy if
they only give a small contribution.

We therefore dynamically set the number of sampling points for each integral depending on
its contribution to the error estimate of the amplitude result and depending on the time required for
each integrand evaluation. For simplicity, we now consider the evaluation of only one form factor
at a given power in ε and we write Eq. (2.8) as F = ∑ j(a j I j). To efficiently calculate F to a given
accuracy εrel = ∆F/F , we set the number of sampling points for each integral by minimizing the
total time

T = ∑
j

t j +λ

(
∆

2
F −∑

j
a2

j∆
2
j

)
, (2.10)

where t j and ∆ j are the integration time and absolute error of integral I j, and λ is a Lagrange
multiplier ensuring the accuracy constraint. After an initial run of each integral with a fixed number
of sampling points, we set the number of sampling points according to Eq. (2.10) assuming that the
error of the individual integrals I j scales as ∆ j ∝ t−e

j . While we obtain a scaling with e = 1 for most
of the integrals, some of the integrals don’t fulfill the smoothness condition of the quasi-Monte
Carlo method leading to worse convergence of these integrals and we therefore set e = 0.7 globally
in the program.

3. Phenomenological Results

We present results for the cross section of Higgs boson pair production at the LHC with a
center of mass energy of

√
s = 14TeV. The masses of the Higgs boson and top quark are set to

mh = 125 GeV and mt = 173 GeV, and we use the PDF4LHC15_nlo_100_pdfas [29, 30, 31, 32]
parton distribution functions, along with the corresponding value for αs. The central value of the
renormalization and factorization scale are set to µR = µF = mHH/2 and we estimate the scale
uncertainty by simultaneously varying these scales by a factor of 2.

We obtain a total cross section of

σ
NLO = 32.90+14%

−13% fb±0.3%(stat.)±0.1%(int.).

where we state the statistical error stemming from the number of evaluated phase points and the
additional error due to the numerical integration of the virtual amplitude in addition to the scale
uncertainty. This result is a factor of ∼1.6 larger than the LO result σLO = 19.85+28%

−21% and 14%
smaller than the result σNLO

HEFT = 38.32+18%
−15% obtained in the Born-improved HEFT approximation.

The differential dependence of the cross section on the invariant mass mhh of the Higgs
bosons as well as the dependence on their transverse momentum pT,h is shown in Fig. 2. We find
good agreement of our predictions with the approximated NLO results for invariant masses below
400GeV, where the HEFT is expected to be valid. However, for large invariant masses we observe
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Figure 2: Differential distributions of the invariant mass mhh of the Higgs boson pair and transverse mo-
mentum pT,h of the Higgs bosons. The center of mass energy is set to

√
s = 14 TeV and the bands result

from scale variations by a factor of two around the central scale µ = mhh/2. We compare our predictions
to the approximated NLO results using the Born-improved HEFT and taking the top-quark mass effects into
account only in the real emission contributions, FTapprox.
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Figure 3: Comparison of the virtual contributions V with the results obtained by an expansion in 1/m2
t .

Results are shown at the amplitude level with the definitions of VN and V ′N given in Eq. (3.1).

that taking the top-quark mass effects into account reduces the cross section by about 20-30% com-
pared to the HEFT result. In the pT,h-distribution we obtain a nearly constant K factor, whereas
the HEFT approximation leads to a significant increase of the NLO corrections for high transverse
momenta. Compared to the HEFT results, the NLO FTapprox results, which include the top-quark
mass effects in the real emission, lead to better agreement with the full NLO result. However, also
this approximation fails to describe the decreasing K factor for high invariant masses.

Fig. 3 shows a comparison of the virtual amplitude with an expansion in 1/m2
t obtained from

private communication with the authors of Ref. [12]. We combine the renormalized amplitude with
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the I-operator defined in Ref. [28] and define

VN = dσ
virt
N +dσ

LO
N ⊗ I and V ′N =VN ·

dσLO

dσLO
N

(3.1)

where dσLO
N and dσV

N are the LO and virtual contribution expanded up to order 1/m2N
t . The figure

shows that the expansion converges to the full virtual amplitude in the region well below the top-
quark threshold at mhh = 2mt but we obtain large differences at higher invariant masses.

4. Conclusions

We presented a computation of the NLO corrections to Higgs boson pair production in gluon
fusion, keeping the full dependence on the top-quark mass throughout the calculation. Since the
results for the two-loop integrals appearing in the virtual amplitude are not known analytically, we
calculate these numerically and we have shown how an accurate result for the amplitude can be
obtained using this numerical approach. Using the methods presented here, we plan to develop a
program for the automated generation and evaluation of multi-loop amplitudes.

Our predictions show that the effects of the top-quark mass are important and they have to be
taken into account to obtain reliable predictions for Higgs boson pair production in gluon fusion.
For low invariant masses of the di-Higgs system we find good agreement of the HEFT result with
our predictions. However, we observe that the inclusion of the top-quark mass reduces the cross
section by ∼30% in phase space regions where mhh or pT,h is large. For the total cross section at
14TeV we obtain a reduction of 14% compared to the result obtained the Born-improved HEFT
approximation.
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