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We consider the production of pairs of Standard Model Higgs bosons via gluon fusion. Until

recently the full dependence on the top quark mass Mt was not known at next-to-leading order.

For this reason we apply an approximation based on the expansion for large top quark masses up

to O(1/M12
t ). At next-to-next-to-leading order we avoid the calculation of real corrections via

the soft-virtual approximation and obtain top quark mass corrections up to O(1/M4
t ). We use our

results to estimate the residual uncertainty of the total cross section due to a finite top quark mass

to be O(10%) at next-to-leading order and O(5%) at next-to-next-to-leading order.
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1. Introduction

Higgs boson pair production is the process at the LHC that may in the future allow for an

independent measurement of the cubic Higgs coupling. With this extraction a test whether the form

of the Higgs potential is consistent with the Standard Model (where the cubic coupling is fixed by

the Higgs bosons’ mass mH and its vacuum expectation value) and thereby of the mechanism of

spontaneous symmetry breaking would be faciliated.

The dominant production mode is, as for single Higgs boson production although with a rel-

ative suppression of O(10−3), gluon fusion. The leading order (LO) calculation was performed

retaining the exact dependence on the top quark mass Mt in Refs. [1, 2]. Next-to-leading order

(NLO) and next-to-next-to-leading order (NNLO) corrections were first calculated in the effective

theory where the top quark is integrated out. See Ref. [3] for the NLO and Refs. [4, 5] for the

NNLO case. Note that the matching coefficient for Higgs boson pairs differs starting from three

loops from the one for a single Higgs boson, see Ref. [6].

Top quark mass corrections at NLO using a systematic expansion in 1/Mt were first studied

in Refs. [7, 8, 9] and in Ref. [10] this calculation was extended to NNLO. In Ref. [11] the exact

dependence on Mt was taken into account for the real NLO corrections. Meanwhile the full NLO

result became available taking into account the exact dependence on Mt also for the virtual cor-

rections, see Ref. [12]. For low center-of-mass energies, say between
√

s = 2mH and
√

s = 2Mt

the numerical uncertainties of Ref. [12] are still quite big whereas the expansions performed in

Refs. [7, 10] show a good convergence behaviour. On the other hand, for higher center-of-mass

energies the results of Refs. [7, 10] can only be used to obtain the order of magnitude of the Mt ef-

fects which were estimated to be ±10 at NLO which is somewhat smaller than the results reported

in Ref. [12].

In this contribution we describe the NNLO calculation of Ref. [10]. We start with full-theory

diagrams where the top quark has not been integrated out. We apply the optical theorem on gg→ gg

forward scattering diagrams to extract the imaginary parts corresponding to real corrections gg →
HH +X with additional partons X in the final state. Virtual corrections are calculated directly

from gg → HH amplitudes by squaring and integration over the HH phase space. As a cross

check we compute also virtual corrections via the optical theorem. In Fig. 1 we show some sample

diagrams within the optical theorem approach. Note, at NLO (NNLO) we have to consider gg →
HH amplitudes with two (three) or gg → gg forward scattering amplitudes with four (five) loops.

2. Calculation

2.1 Differential factorization

The partonic cross section for the production of a pair of Higgs bosons via gluon fusion has

the perturbative expansion

σi j→HH+X (s,ρ) = δigδ jgσ
(0)
gg (s,ρ)+

αs

π
σ
(1)
i j (s,ρ)+

(αs

π

)2

σ
(2)
i j (s,ρ)+ . . .

= σ LO +δσ NLO+δσ NNLO + . . . ,

(2.1)
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Figure 1: Sample forward scattering diagrams for the gg channel. Curly lines represent gluons, dashed lines

Higgs bosons and solid lines top quarks. The wavy line denotes a cut. The first row shows real corrections

at NLO, the second row virtual corrections at NNLO.

where we consider in the following only the dominant gg channel with i = j = g. The variable

ρ = m2
H/M2

t describes the dependence on the Higgs boson and top quark masses. For convenience

we absorb powers of αs in the second line of Eq. (2.1).

The factorization of the LO result can be performed at the level of the differential cross section,

see Ref. [3]:

σ (i) =
∫ s

4m2
H

dQ2

(
dσ

(0)
exact

dQ2

)

(
dσ

(0)
exp

dQ2

)
dσ

(i)
exp

dQ2
with

dσ
(i)
exp

dQ2
=

N

∑
n=0

c
(i)
n ρn, (2.2)

where “exact” refers to the LO result with full dependence on ρ , “exp” to the expansion for small ρ

and Q2 is the invariant mass of the Higgs boson pair. The functional dependence of dσ
(0)
exact/dQ2 and

dσ
(i)
exp/dQ2 in Eq. (2.2) are assumed to be similar in the region where Q2 & 4M2

t which is expected

to lead to a well behaved integrand. Note that we require the series expansions in numerator and

denominator to be truncated at the same order N.

Within the framework described in Ref. [7] we computed the real NLO corrections via the

forward scattering amplitude gg → gg using the optical theorem. For this reason we have no imme-

diate access to the Q2 dependence for these contributions. In contrast, the virtual corrections have a

trivial Q2 dependence δ (s−Q2) and are available to us from the direct calculation of the gg → HH

amplitude.

2.2 Soft-virtual approximation

The obstacle we pointed out can be circumvented by applying the soft-virtual approximation,

cf. Ref. [13]. We split a cross section σ up according to

σ = finite = σ virt+ren +σ real+split = Σdiv + Σfin + Σsoft
︸ ︷︷ ︸

=ΣSV

+ Σhard
︸︷︷︸

=ΣH

. (2.3)

The finite cross section is composed of virtual correction and renormalization pieces σ virt+ren and

real correction and infrared counterterm pieces σ real+split. These pieces in turn can be split up

further: divergent terms Σdiv and finite terms Σfin for the former, divergent “soft” terms Σsoft and

finite “hard” terms Σhard = ΣH for the latter. The sum of the first three terms on the right-hand side
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M2
t ,m

2
H ,s

−→

M2
t

×

m2
H ,s

×

M2
t

+

M2
t

×

m2
H ,s

×

M2
t

Figure 2: Asymptotic expansion in M2
t ≫ m2

H ,s applied to a virtual NLO forward scattering diagram, re-

sulting in two different regions. Curly lines are gluons, dashed lines are the (cut) Higgs bosons and thick

blue lines represent the top quarks. Each (sub)diagram is labeled with the scales it involves.

of Eq. (2.3) is finite and comprises the soft-virtual approximation. Note that this splitting holds

also for differential cross sections dσ/dQ2.

Σdiv is universal for color-less final states and can be found in Refs. [6, 13]. We obtain Σfin

by computing σ virt+ren as expansion in ρ and solving σ virt+ren = Σdiv + Σfin. Σdiv and Σsoft are

proportional to σ LO and therefore automatically include effects due to finite Mt . We write the

differential and total cross sections as

Q2 dσ

dQ2
= σ LOzG(z) with G(z) = GSV(z)+GH(z) , z =

Q2

s
, (2.4)

σ =
∫ 1

1−δ
dzσ LO(zs)G(z) with δ = 1− 4m2

H

s
, (2.5)

where omitting GH(z) means using the soft-virtual approximation. GSV(z) is constructed from σ
(i)
fin

and σ LO only and can be found in Refs. [10, 13].

2.3 Asymptotic expansion

Let us briefly describe the computation of the diagrams as an expansion in ρ . The integrands

of Feynman integrals are expanded according to a hierarchy of scales M2
t ≫ m2

H ,s for all possible

scalings of loop momenta, so-called “regions”, and summed afterwards. The outcome of this

procedure is a reduction of scales and loops which have to be considered at the same time (diagrams

factorize). In case of an expansion for a hard mass all relevant regions correspond to subgraphs

which must contain all heavy lines. For illustration we sketch the expansion regions for a virtual

NLO diagram in the forward scattering approach in Fig. 2. Two regions emerge: one with a “soft”

two-loop four-point graph multiplied with two “hard” one-loop tadpoles and one with a soft one-

loop four-point graph multiplied with hard one- and two-loop tadpoles.

2.4 Software setup

Our software setup is highly automated, but we omit a detailed survey here and refer instead

to Ref. [10] where also intermediate results are given and the calculation of the master integrals is

discussed. We generate diagrams with QGRAF [14] where in the case of gg→ gg postprocessing [9,

15] is mandatory. For topology identification and other steps of the calculation we use the package

TopoID [9, 15]. Asymptotic expansion and mapping of diagrams to topologies is performed

with q2e and exp [16, 17]. The reduction to scalar integrals uses FORM [18]. Soft four-point

subdiagrams are reduced to master integrals with FIRE [19, 20] and the in-house code rows [15].

Hard subdiagrams are always massive tadpoles and can be treated with MATAD [21].
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Figure 3: NLO hadronic cross section σNLO
H in the upper panel and K factor KNLO in the lower panel as

functions of
√

scut, a technical upper cut on
√

s and proxy to the invariant mass of the Higgs boson pair.

We use “∞” to symbolize the results for the total inclusive cross section and K factor on the right-hand side.

Here and in the following the color coding indicates the inclusion of higher orders in the ρ expansion. Figure

taken from Ref. [10].

3. Results

We summarize the main features of our findings in bullet points. For details, such as the

particular values of input parameters, cf. Ref. [10]. Throughout the presented analysis we set the

renormalization scale to µ = 2mH and use the MSTW2008 PDFs [22].

• In a split-up (not shown) of the NLO correction to the total partonic cross section into soft-

virtual and hard contributions, we observe different patterns when including higher ρ correc-

tions: soft-virtual corrections increase, whereas hard ones descrease with
√

s. Soft-virtual

corrections dominate over the full range of
√

s, above 400GeV hard ones become flat.

• In Fig. 3 we show results for hadronic quantities. We introduced a technical upper cut-off

for the partonic center-of-mass energy
√

scut which is a good approximation to the invariant

mass of the produced Higgs boson pair:

σH(sH ,scut) =
∫ 1

4m2
H/sH

dτ

(
dLgg

dτ

)

(τ)σ(τsH)θ(scut − τSH), (3.1)

where
√

sH = 14TeV is the hadronic center-of-mass energy for the LHC and Lgg is the

luminosity function for two gluons in the inital state.

From the spread of ρ orders for the total hadronic cross section σ NLO
H on the right-hand

side, when
√

scut → ∞, we infer the uncertainty due to top quark mass corrections to be

about ±10%.

• In the soft-virtual approximation GSV(z) from Eq. (2.3) can be replaced by f (z)GSV(z) with

any f (z) fulfilling f (1) = 1 since the splitting into hard and soft-virtual components is not
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Figure 4: LO, NLO and NNLO contributions δσ to the partonic cross section. At LO the exact result

is shown as solid black line, at NLO and NNLO we give only the first three expansion orders in ρ for

consistency and we use f (z) = z at NNLO (see the main text). The inset magnifies the region of small
√

s.

Figure taken from Ref. [10].

unique. At NLO we observe that using f (z) = z and neglecting hard contributions is accurate

within 2%. Also, replacing log(µ2/s) by log(µ2/Q2) leads to better results which can be

justified in the soft limit where s ≈ Q2. We adopt these prescriptions to proceed at NNLO.

• In Fig. 4 we recognize for the LO, NLO and NNLO corrections δσ the same pattern in the ρ

expansion (negative shifts for ρ1 and positive ones for ρ2) and that the peak positions move

to lower values for
√

s for higher perturbative orders.

• For the total hadronic cross section σH up to NNLO in Fig. 5 we find good convergence up

to
√

scut ≈ 400GeV and deduce in the same way as on NLO an uncertainty due to the top

quark mass of about ±5% (note that NNLO corrections within the effective theory amount

to about 20% by themselves).

• In the behavior of the K factor up to NNLO in Fig. 6 we see that the characteristic form

around the 2Mt threshold is not washed out. The strong raise close to the 2mH threshold

is explained by the steepness of the NNLO correction, see the inset. The hadronic NNLO

K factor is in the range 1.7 to 1.8.

4. Conclusion

We computed corrections due to a finite top quark mass using an asymptotic expansion in the

limit M2
t ≫ m2

H ,s. At NLO our method yields results up to O(1/M12
t ), at NNLO up to O(1/M4

t )

using the soft-virtual approximation. We estimate the residual error on the total cross section due

to finite Mt to be O(10%) at NLO and O(5%) at NNLO.

The recently completed full NLO contribution to the total cross section, see Ref. [12] and the

presentations [23, 24], is decreased by 14% compared to the Mt → ∞ limit. For Q2 ≤ 400GeV ef-

fects of O(10%) are reported for the differential cross section and even larger ones above 400GeV.
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Figure 5: LO, NLO and NNLO hadronic cross sections σH . At LO the exact is shown, at NLO we give only

the leading expansion term and at NNLO the first three terms in ρ . On the right-hand side the total inclusive

results are given. Figure taken from Ref. [10].
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Figure 6: LO, NLO and NNLO hadronic K factors KH . The notation is as in Fig. 5. Figure taken from

Ref. [10].

The NNLO contributions yield a O(20%) correction in the Mt → ∞ limit which could be

modified substantially by the Mt dependence, but a full NNLO calculation is out of scope of present

techniques. Therefore it seems disirable to refine our approximation procedure to better reproduce

the findings of Ref. [12] and to revisit the NNLO case.
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