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1. Introduction

One of the bottlenecks in modern multi-loop calculations is the treatment of the occurring

multi-loop Feynman integrals. The integration-by-parts reduction [1–4] to master integrals can

be performed with a number of publicly available tools [5–9]. Although in practice often limited

by computer resources, this step can be considered as conceptually solved. The same can not

be said about the computation of the master-integrals themselves. One of the most widely used

methods is the method of differential equations [3, 10, 11], which received a major improvement

by the suggestion [12] to use a canonical basis of master integrals. Once the differential equation

is expressed with respect to such a basis, the solution in terms of iterated integrals [13, 14] can

be immediately obtained up to integration constants. This refined method of differential equations

has been successfully applied in many calculations in recent years [12, 15–38]. In the univariate

case, a complete algorithm [39] using difference equations is available, which does not rely on the

existence of a canonical basis.

With the new approach the main difficulty is to find a canonical basis of master integrals.

Several different strategies have been employed to construct a canonical basis [12, 16, 21, 25, 29,

40, 41]. Here we want to propose an algorithm that computes the transformation to a canonical

basis. It is applicable to multi-scale problems with rational dependence on the regulator. It is first

shown that the problem to find a transformation to a canonical basis can be mapped to the problem

of finding a rational solution of a finite number of differential equations. Then we argue that this

can be achieved with an ansatz that is a linear combination of functions from a special class of

rational functions [42, 43].

2. Preliminaries

Let ~f (ε ,{x j}) be the m dimensional vector of master integrals, which are functions of M

dimensionless kinematic invariants {x j} and the dimensional regulator ε . The derivative of a master

integral with respect to the kinematic invariants can always be written as a linear combination of

master integrals from the same or lower sectors. Thus, upon differentiating with respect to all

kinematic invariants, the following linear system of differential equations is obtained

∂i
~f (ε ,{x j}) = ai(ε ,{x j})~f (ε ,{x j}), i = 1, . . . ,M (2.1)

with the ai(ε ,{x j}) being m×m matrices of rational functions in the kinematic invariants {x j} and

ε . In the more compact differential notation equation (2.1) can be written as

d~f (ε ,{x j}) = a(ε ,{x j})~f (ε ,{x j}), (2.2)

with

a(ε ,{x j}) =
M

∑
i=1

ai(ε ,{x j})dxi. (2.3)

Transforming the basis of master integrals with an invertible transformation T ,

~f = T (ε ,{x j})~f
′, (2.4)
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as suggested in [12], leads to the following transformation law for a(ε ,{x j}):

a′ = T−1aT −T−1dT. (2.5)

If a(ε ,{x j}) is exact, i.e. an A(ε ,{x j}) exist such that

dA(ε ,{x j}) = a(ε ,{x j}) (2.6)

and the dependence of A(ε ,{x j}) on the kinematic invariants is only logarithmic

A(ε ,{x j}) =
N

∑
l=1

Al(ε) log(Ll({x j})), (2.7)

a(ε ,{x j}) is called to be in dlog-form. Here Ll({x j}) denotes polynomials in the kinematic invari-

ants and the Al are m×m matrices which solely depend on ε . The set of polynomials

A = {L1({x j}), . . . ,LN({x j})} (2.8)

is commonly referred to as the alphabet of the differential equation. The individual polynomials

are called the letters of the differential equation. In [12] it was observed that with a suitable change

of the basis of master integrals it is often possible to arrive at a form in which the dependence on ε

factorizes:

A(ε ,{x j}) = ε
N

∑
l=1

Ãl log(Ll({x j})), (2.9)

with Ãl being constant m×m matrices. In this form, which is called ε-form, it is particularly easy

to solve the differential equation in terms of iterated integrals [13, 14].

3. General properties of the Transformation

It is useful to first look into general properties of the transformation law (2.5). Consider a

transformation T , which transforms the differential equation into ε-form. Then an Ã exists such

that

εdÃ(ε ,{x j}) = a′(ε ,{x j}) (3.1)

holds. In this case (2.5) can be written in the form

εdÃ = T−1aT −T−1dT. (3.2)

Taking the trace on both sides of (3.2) leads to

εTr[dÃ] = Tr[a]−Tr[T−1dT ]. (3.3)

Applying Jacobi’s formula for the differential of determinants

ddet(T ) = det(T )Tr[T−1dT ] (3.4)

one obtains

d log(det(T )) = Tr[a]− εTr[dÃ]. (3.5)
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It follows that a necessary condition for the existence of an ε-form is that the form Tr[a] is exact:

Tr[a] = d
(

εTr[Ã]+ log(det(T ))
)

. (3.6)

In fact, with (2.9) it is evident that Tr[a] has to be in dlog-form

Tr[a] = ε
N

∑
l=1

Tr[Ãl]dlog(Ll(ε ,{x j}))+dlog(det(T )). (3.7)

As the components of T are required to be rational in the invariants and ε , det(T ) will also have

this property. One may bring all summands of det(T ) on a common denominator and factorize the

numerator and denominator into irreducible polynomials in K[ε ,{x j}]. Here, K[ε ,{x j}] denotes

the ring of polynomials in the invariants and ε with coefficients in a field K. There is no need

to specify the field at this point, for the present application one may have the real and complex

numbers in mind. Thus, det(T ) can be written as

detT =C(ε)p1({x j})
e1 · · · pK({x j})

eK q1(ε ,{x j})
d1 · · ·qL(ε ,{x j})

dL , (3.8)

with ei ∈ Z and d j ∈ Z. The irreducible factors, which only depend on the invariants, are labeled

p and those, which depend on both ε and the invariants, q. The product of all factors, which only

depend on ε is denoted by C(ε). The factorization allows to rewrite (3.7)

Tr[a] = ε
N

∑
l=1

Tr[Ãl]dlog(Ll({x j}))+
K

∑
i=1

eidlog(pi({x j})) (3.9)

+
L

∑
j=1

d jdlog(q j(ε ,{x j})).

This equation can be understood as a necessary condition on the form of Tr[a] for a rational trans-

formation T to exist, which transforms the differential equation into ε-form. In particular, it implies

Tr[a(k)] = 0 ∀k < 0, (3.10)

where the a(k) denote the coefficients of the ε-expansion of a(ε ,{x j}). Furthermore, one observes

that the coefficients of the dlog-terms stemming from det(T ) are integers whereas the coefficients

of the dlog-terms from Tr[dÃ] are proportional to ε . This allows one to calculate the determinant

of T up to a rational function C(ε). Moreover, one can also read off the traces of the Ãl of the

resulting ε-form. In practice, one can test whether Tr[a] can be written as follows

Tr[a] = εX({x j})+Y (ε ,{x j}), (3.11)

with X and Y denoting sums of dlog-terms. If this is not the case one may conclude that no rational

transformation exists, which can transform a(ε ,{x j}) into ε-form. Otherwise one can extract

det(T ) = C(ε)exp

(

∫

γ
Y (ε ,{x j})

)

, (3.12)

Tr[dÃ] = X({x j}). (3.13)
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As will be argued later, both equations provide useful information for the determination of T . Note

that for one-dimensional sectors (3.12) already fixes the transformation up to a rational function

in ε . The choice of this function does not alter the resulting a′. Therefore, one may set for the

undetermined C(ε)

C(ε) = 1, (3.14)

which then completely fixes the transformation. The determinant provides valuable information

for the computation of T for higher-dimensional sectors as well.

4. Expanding the Transformation

Every invertible transformation T , which transforms the differential equation into ε-form, has

to satisfy (3.2) for some dÃ, which has to be determined as well. For invertible T , equation (3.2)

can equivalently be written as

dT −aT + εTdÃ = 0. (4.1)

This form has the advantage of not containing the inverse of T . The strategy to find a solution

of this equation is to expand T in ε and solve for its coefficients order by order. In general, the

expansion of T may have infinitely many non-vanishing coefficients. This poses a problem for the

algorithmic computation of these coefficients. In the following it will be shown how this problem

can be circumvented.

The equation (4.1) is invariant under the multiplication of T by a rational function g(ε). Any

such rational function can be written as a product of some power of ε and a polynomial η(ε) with

non-vanishing constant coefficient

g(ε) = ετη(ε). (4.2)

Demanding the expansion of T to start at order ε0

T =
∞

∑
n=0

εnT (n), T (0) 6= 0, (4.3)

only fixes the value of τ , but one is still free to choose some η(ε). As a(ε ,{x j}) is required to be

rational in both the invariants and ε , there exists a polynomial h(ε ,{x j}) such that â := ah has a

finite Taylor expansion in ε

â =
kmax

∑
k=0

εkâ(k), kmax < ∞. (4.4)

In addition to that, h is required to be minimal in the sense that it shall have the smallest possible

number of irreducible factors for which â has a finite ε-expansion. This fixes h up to a multiplicative

constant, which is irrelevant here. Defining T̂ := T h and rewriting equation (4.1) in terms of T̂

yields

− T̂dh+hdT̂ − âT̂ + εhT̂dÃ = 0. (4.5)

It can be shown that each solution T of (4.1) corresponds via T = T̂/h to a solution T̂ of (4.5)

with finite ε-expansion. This allows one to avoid computing infinitely many coefficients in the

expansion of T . Instead, one may calculate T̂ by expanding (4.5) in ε :
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− T̂dh+hdT̂ =
nmax+lmax

∑
n=2lmin

εn
min(lmax,n−lmin)

∑
k=lmin

(

−dh(k)T̂ (n−k)+h(k)dT̂ (n−k)
)

, (4.6)

εhT̂ dÃ =
nmax+lmax

∑
n=2lmin

εn+1
min(lmax,n−lmin)

∑
k=lmin

h(k)T̂ (n−k)dÃ (4.7)

=
nmax+lmax+1

∑
n=2lmin+1

εn
min(lmax,n−lmin−1)

∑
k=lmin

h(k)T̂ (n−k−1)dÃ, (4.8)

âT̂ =
nmax+kmax

∑
n=lmin

εn
min(kmax,n−lmin)

∑
k=0

â(k)T̂ (n−k), (4.9)

with

h =
lmax

∑
l=lmin

h(l), lmin ≥ 0, lmax < ∞. (4.10)

Note that the equation at some order k only involves T̂ (n) with n ≤ k, which means that one can

compute the T̂ (n) successively, starting with the lowest order. Given some a(ε ,{x j}), one first

calculates h and â, which in turn fixes the values of lmin, lmax and kmax. However, the value of nmax

remains unknown until the solution for T̂ is known. Therefore, one should test at each order k

whether k = nmax. In order to do so one has to check if T̂ (n) = 0 for all n > k solves the equations

of the remaining max(kmax, lmax +1) subsequent orders. The algorithm stops as soon as this test is

successful and returns T = T̂/h.

5. Solving for a rational transformation

The previous section showed that the problem of finding a transformation T to a canonical ba-

sis is equivalent to finding a rational solution of the finite number of differential equations, which

appear by expanding (4.5). These differential equations do in general admit transcendental solu-

tions for T̂ (n). However, one is only interested in rational solutions, therefore it suggests itself to

solve the differential equations with a rational ansatz. This means that a subspace of the space

of rational functions in the invariants has to be parameterized. There are many different ways of

achieving this, but in order to end up with linear equations in the parameters one makes an ansatz

of the following form for the Taylor coefficients of T̂

T̂ (n) =
|RT |

∑
k=1

τ
(n)
k rk({x j}), (5.1)

RT :=
{

r1({x j}), . . . ,r|RT |({x j})
}

. (5.2)

Here the τ
(n)
k are m×m matrices of unknown parameters and RT a set of rational functions. It was

shown in [42, 43] that every rational function can be written as a linear combination of simple ratio-

nal functions. These simple rational functions have the property that their irreducible denominator

factors are algebraically independent and share a common zero. The former implies that one does

5



P
o
S
(
L
L
2
0
1
6
)
0
2
8

Automatizing the transformation to a canonical basis of multi-loop Feynman integrals Christoph Meyer

not have to consider rational functions with more irreducible denominator factors than the number

of variables, as those would necessarily be algebraically dependent. The set RT can without loss

of generality be restricted to contain only rational functions of this particular type. Moreover, the

determinant of T̂ is known by virtue of (3.12). Information on which irreducible factors have to be

present in the elements of RT can then be extracted from the determinant.

Note that dÃ is also unknown in (4.5). However, Ã is already very constrained, since we

require it to be of the form

Ã =
N

∑
l=1

αl log(Ll({x j})). (5.3)

Here, the αl are considered as m×m matrices of unknown parameters. The alphabet

A = {L1({x j}), . . . ,LN({x j})} (5.4)

has to be chosen such that it contains all letters which are necessary for a resulting ε-form. A natural

choice is to take the set of all irreducible denominator factors occurring in â. Also remember that

(3.13) fixes the traces of all αl and thereby reduces the number of free parameters. Consider the

expansion of (4.5) with the above ansatz inserted. Upon requiring the resulting equations to hold for

all allowed values of the invariants, one obtains a system of equations in the unknown parameters.

It may happen that T̂ (n) is not fully determined by the equations of order n or lower. If Ã is not

fully determined as well, it can happen that terms, which are nonlinear in the parameters, arise at

the equation of order n+1 due to the term εT dÃ in (4.1). So in general one has to solve a system

of polynomial equations in the unknowns in order to determine the solution.

6. Conclusion

In this report we have shown that the transformation to a canonical basis of master integrals

can be obtained by finding rational solutions of a finite number of differential equations. We argued

that this can be achieved with an ansatz in terms of a special class of rational functions [42, 43]. The

block-triangular form, which the differential equations inherit from the structure of the integration-

by-parts identities, has not been exploited here. However, this can be incorporated in the above

approach to give an algorithm, which then computes the transformation in a bottom-up approach.
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