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1. Introduction

Various methods for the symbolical computation of multi-loop Feynman integrals rely on prop-

erties of classical polylogarithms

Lin(z) =
∞

∑
j=1

z j

jn
, |z|< 1,

and their generalizations. By now the class of multiple polylogarithms [24, 25]

Lin1,...nk
(z1, ...,zk) = ∑

0< j1<...< jk

z
j1
1 ...z jk

k

j
n1

1 ... jnk

k

, |zi|< 1,

is well-established in particle physics.

One of the advantages of these functions is their iterated integral structure. For example a

classical polylogarithm of weight n ≥ 2 can be written as

Lin(z) =

∫ z

0

dx

x
Lin−1(x) (1.1)

and similar relations hold for the generalizations.

One of the computational approaches making use of this property is the method of differential

equations [29, 34]. Here a Feynman integral is computed by integrating over a linear combination

of other Feynman integrals. If the latter are known in terms of generalized polylogarithms and if

they appear with integral kernels in an appropriate set of differential forms, then the integral over

these expressions can be computed by use of relations such as eq. 1.1 and the result belongs to the

same class of functions.

The computations summarized in these notes are motivated by the fact, that multiple poly-

logarithms are not sufficient to express every Feynman integral. We consider several cases of the

massive sunrise integral, which is a famous showcase of this problem. Various classes of functions

different from polylogarithms were applied to this integral in the past. More recently, the case of

equal masses in two space-time dimensions was expressed with the help of an elliptic dilogarithm

in [14].

We define a related class of elliptic generalizations of polylogarithms, including a general-

ization depending on several variables. With the help of these functions, we compute the sunrise

integral in the case of arbitrary masses at two and, with the help of dimension shift relations, near

four space-time dimensions. We furthermore show for the case of equal masses and two dimen-

sions, that all orders of the Laurent expansion can be expressed with the help of our framework

of functions. We provide an explicit algorithm for the computation of these orders, relying on

corresponding differential equations and on the iterated integral structure of our class of functions.

2. A class of elliptic generalizations

We define a class of functions of variables q, x1, ...,xl , y1, ...,yl . They are related with polylog-

arithms and known elliptic generalizations.
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2.1 Definitions

For l = 1 we define

ELin;m(x;y;q) =
∞

∑
j=1

∞

∑
k=1

x j

jn

yk

km
q jk (2.1)

and for l > 1 we define

ELin1,...,nl ;m1,...,ml ;2o1,...,2ol−1
(x1, ...,xl ;y1, ...,yl ;q)

=
∞

∑
j1=1

...
∞

∑
jl=1

∞

∑
k1=1

...
∞

∑
kl=1

x
j1
1

j
n1

1

...
x

jl
l

j
nl

l

y
k1

1

k
m1

1

..
y

kl

l

k
ml

l

q j1k1+...+ jlkl

∏l−1
i=1 ( jiki + ...+ jlkl)

oi
(2.2)

We will refer to these as ELi-functions.

By construction, this class of functions is closed under multiplication with the (l = 1)-case

ELin;m and under integration over
dq
q
. We have

ELin1,...,nl ;m1,...,ml ;2o1,...,2ol−1
(x1, ...,xl ;y1, ...,yl ;q)

= Io1ELin1;m1
(x1;y1;q′)ELin2,...,nl ;m2,...,ml ;2o2,...,2ol−1

(

x2, ...,xl ;y2, ...,yl ;q′
)

where Ioi denotes the oi-fold integration

Ioi =

∫ q

0

dq1

q1

∫ q1

0

dq2

q2

...

∫ qoi−2

0

dqoi−1

qoi−1

∫ qoi−1

0

dq′

q′
for oi > 0

and I0 = 1.

Combining the above ELi-functions, we furthermore define a class which we will refer to as

E-functions by

En;m(x;y;q) = dn,m

(

1

2
Lin(x)+ cn,m

1

2
Lin(x

−1)+ELin;m(x;y;q)+ cn,mELin;m(x
−1;y−1;q)

)

where cn,m = −1, dn,m =−i for even n+m and cn,m = 1, dn,m = 1 for odd n+m. We furthermore

define

En1,...,nl ;m1,...,ml ;2o1,...,2ol−1
(x1, ...,xl ;y1, ...,yl ;q)

= Io1
(

En1;m1
(x1;y1;q′)−En1;m1

(x1;y1;0)
)

ELin2,...,nl ;m2,...,ml ;2o2,...,2ol−1

(

x2, ...,xl ;y2, ...,yl ;q′
)

.

Our results for the sunrise integral, discussed below, will be expressed in terms of E-functions and

multiple polylogarithms.

2.2 Relations with known functions

In the case of all o−indices being zero, the ELi-functions are products of the (l = 1)-case:

ELin1,...,nl ;m1,...,ml ;0,...,0 (x1, ...,xl ;y1, ...,yl ;q) =
l

∏
i=1

ELini;mi
(xi;yi;q).
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For q = 1 the latter is furthermore just a product of polylogarithms due to

ELin;m(x;y;q) =
∞

∑
k=1

yk

km
Lin(q

kx) and ELin;m(x;y;1) = Lin(x)Lim(y).

More notably, the E-functions are related to known versions of elliptic polylogarithms. Let us

briefly recall a basic principle behind such functions. We consider a lattice of points L = Z+ τZ

where τ ∈C with Im(τ)> 0. A function of x ∈C is called elliptic with respect to L if it is periodic

under x → x+λ with λ ∈ L. For a function F of z = e2πix ∈C
⋆ this condition translates to

F(z) = F(zq) for q = e2πiλ , λ ∈ L.

This concept was first applied to define an elliptic dilogarithm in [11]. Generalizations were intro-

duced in [9, 23, 31, 40].

In [17] elliptic polylogarithms are defined as coefficients of the regular part of the Laurent

expansion around α = 0 of functions

Em(z;u;q) = ∑
n∈Z

unLim(q
nz) (2.3)

with u = e2πiα . The latter functions are related to the above functions En;m(x;y;q). We have for

example

E2;0(x;y;q) =
1

i

(

E2(x;y;q)− 1

2

1+ y

1− y
ζ (2)− 1

4

1+ y

1− y
ln2(−x)

− y

(1− y)2
ln(−x) ln(q)− 1

2

y(1+ y)

(1− y)3
ln2(q)

)

. (2.4)

The functions En;m(x;y;q) can furthermore be understood as generalizations of Clausen- and Glaisher-

functions, which are defined by

Cln (ϕ) =
1

2i

(

Lin
(

eiϕ
)

−Lin
(

e−iϕ
))

, Gln (ϕ) =
1

2

(

Lin
(

eiϕ
)

+Lin
(

e−iϕ
))

for even n and by

Cln (ϕ) =
1

2

(

Lin
(

eiϕ
)

+Lin
(

e−iϕ
))

, Gln (ϕ) =
1

2i

(

Lin
(

eiϕ
)

−Lin
(

e−iϕ
))

for odd n. We have

limq→0En;m

(

eiϕ ;y;q
)

= Cln (ϕ)

for m being zero or even and

limq→0En;m

(

eiϕ ;y;q
)

= Gln (ϕ)

for m being odd.
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3. Cases of the massive sunrise integral

The massive sunrise integral

S(D, t) =

∫

dDk1dDk2
(

iπD/2
)2

1
(

−k2
1 +m2

1

)(

−k2
2 +m2

2

)

(

−(p− k1 − k2)
2 +m2

3

) ,

which in various versions was considered by many authors [5–8, 10, 15, 16, 18–22, 26–28, 30, 33,

35, 36, 39], is a showcase for the mentioned problem, that there are Feynman integrals which can

not be expressed entirely in terms of multiple polylogarithms. For arbitrary masses and arbitrary

dimension D, the integral was computed in [10] in terms of Lauricella functions of type C. The fact

that none of the existing techniques provides a way to expand these functions in terms of multiple

polylogarithms so far may be seen as a confirmation of the mentioned problem.

With respect to the variable t = p2 which we consider in the region t ≤ 0, the integral S(D, t)

satisfies a differential equation

L4S(D, t) = T (D, t).

Here L4 is a differential operator of fourth order and the inhomogeneous part T (D, t) is a com-

bination of tadpole integrals, all of whose coefficients are polynomials in m2
1, m2

2, m2
3, t, D. In the

following we will consider coefficients in the Laurent series of S(D, t), satisfying differential equa-

tions of fourth or lower order. These coefficients will arise from the expansion at D = 2 and at

D = 4 dimensions:

S(2−2ε , t) = S(0)(2, t)+S(1)(2, t)ε +O
(

ε2
)

, (3.1)

S(4−2ε , t) = S(−2)(4, t)ε−2 +S(−1)(4, t)ε−1 +S(0)(4, t)+O(ε). (3.2)

3.1 The case of D = 2 dimensions

The case of exactly D = 2 dimensions is a good starting point for several reasons. Firstly,

the Feynman integral is finite here. The Laurent expansion in eq. 3.1 begins with S(0)(2, t) which

satisfies a differential equation [32]

L2 S(0)(2, t) = P(t), (3.3)

where L2 is a second order differential operator with respect to t whose coefficients are polynomials

in the squared masses and t. The inhomogeneous part P(t) furthermore involves logarithms of the

squared masses.

Secondly, if we write the Feynman integral in terms of Feynman parameters, the first Symanzik

polynomial drops out in D = 2 dimensions and the integrand only involves the second one, which

reads

F =−x1x2x3t +
(

x1m2
1 + x2m2

2 + x3m2
3

)

(x1x2 + x2x3 + x1x3) .

Even though we do not attempt to integrate out the Feynman parameters, this polynomial plays

an important role in our computations. The zero set of this polynomial intersects the domain of

the Feynman parametric integral at three points in its corners. By choosing one of these points as

4
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the origin, we obtain an elliptic curve defined by F . The corresponding Weierstrass normal form

defines three zeros e1, e2, e3 of the cubical equation. Using these as integration boundaries, one

canonically defines two period integrals ψ1, ψ2 of the elliptic curve. These evaluate to

ψ1 =
4

D̃
1
4

K(k), ψ2 =
4i

D̃
1
4

K(k′)

where

K(x) =
∫ 1

0
dt

1
√

(1− t2)(1− x2t2)

is the complete elliptic integral of first kind and where

k =

√

e3 − e2

e1 − e2

, k′ =
√

1− k2 =

√

e1 − e3

e1 − e3

and

D̃ = (t − (m1 +m2 −m3)
2)(t − (m1 −m2 +m3)

2)(t − (−m1 +m2+m3)
2)(t − (m1 +m2 +m3)

2).

As ψ1 and ψ2 are solutions of the homogeneous equation L2 S(0)(2, t) = 0, the special solution of

the inhomogeneous eq. 3.3 can be constructed by classical variation of constants as an integral

over a certain combination of the homogeneous solutions. In this way, we obtain the full solution

involving an integral over complete elliptic integrals [1].

However, we find [2] that the solution can be written alternatively as

S(0)(2, t) =
ψ1(q)

π
E(0), (3.4)

E(0) =
3

∑
i=1

E2;0(wi(q); −1; −q) (3.5)

where E2;0 is one of the E-functions. The dependence on t is now given in terms of q which we

define as q = e
πi

ψ2 (t)
ψ1(t) in terms of the period integrals of our elliptic curve. The three arguments w1,

w2, w3 are obtained explicitly from the mentioned intersection points by transformations on the

elliptic curve.

3.2 Higher orders and four dimensions

Computing higher orders in the Laurent expansion is interesting for several reasons. First

of all, we obtain a result for the four-dimensional case in this way. While the pole terms of eq.

3.2 were already known, we obtain [3] the coefficient S(0)(4, t) in terms of S(0)(2, t), S(1)(2, t),
∂

∂m2
i

S(0)(2, t), ∂
∂m2

i

S(1)(2, t), i = 1, 2, 3 by use of dimension shift relations [37, 38]. As S(0)(2, t) is

given by eq. 3.4, the missing ingredient here is S(1)(2, t). This coefficient satisfies a fourth order

differential equation

L1,aL1,bL2S(1)(2, t) = I1(t)

where the inhomogeneous part I1(t) involves a polynomial of the squared masses and t, logarithms

of the squared masses and the coefficient S(0)(2, t). The differential operator factorizes into two

5
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operators of first order L1,a, L1,b and an operator L2 of second order which we already know from

eq. 3.3. Due to this factorization, we obtain the second order differential equation

L2S(1)(2, t) = I2(t)

where the only difference to eq. 3.3 is a more complicated inhomogeneous part I2(t). Applying

variation of constants as above, we obtain an explicit result for S(1)(2, t) which we express in terms

of E-functions. We arrive at [3]

S(1)(2, t) =
ψ1(q)

π
E(1),

E(1) =

(

3

∑
j=1

(

E1;0(w j;1;−q)− 1

3
E1;0(w j;−1;−q)

)

− 2

3

3

∑
j=1

ln

(

m2
j

µ2

)

−6E1;0(−1;1;−q))E(0)+E
(1)
R

where E
(1)
R is a linear combination of the functions Li2, Li3, Li2,1, E3;1 and E0,1;−2,0;4 and where

E(0) is defined in eq. 3.5. With the help of this result, one obtains the coefficient S(0)(4, t) of the

sunrise integral around four dimensions.

The other reason for computing even higher orders in the Laurent series is our interest in the

functions appearing there. Now we consider the case of equal masses m = m1 = m2 = m3. As a

first step, we define

S̃(2−2ε , t) =
∞

∑
j=0

ε jS̃( j)(2, t)

by

S(2−2ε , t) = Γ(1+ ε)2

(

3µ4
√

t

m(t −m2)(t −9m2)

)ε

S̃(2−2ε , t).

The differential equations simplify for S̃ and allow us to recursively express any coefficient in the

Laurent series as

S̃( j) =−ψ1

π

∫ q

q0

dq1

q1

∫ q1

q0

dq2

q2

(

a j +bS̃( j−2)
)

for j ≥ 2.

We can show that all functions a j and the j-independent function b in this equation can be expressed

as products of ELi-functions. The lowest coefficients S̃(0), S̃(1) are immediately obtained from our

previous results in terms of E- or ELi-functions. Therefore, due to the properties of our classes of

functions discussed in section 2.1, all coefficients S̃( j) can be expressed in terms of E-functions,

together with classical and multiple polylogarithms. As a consequence, the same is true for all

orders of S(2−2ε , t) [4].

4. Conclusions

By use of the class of functions defined in section 2.1 we have computed the sunrise integral

to order O(ε) in two dimensions and to order O(ε0) in four dimensions. For the case of equal

masses and two dimensions, we presented an algorithm to compute all orders. The iterated integral

structure of our class of functions has shown to be useful in the systematic use of the method

of differential equations. It therefore suggests itself to be used in future computations of further

integrals, beyond multiple polylogarithms and beyond the sunrise.
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