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1. Introduction

From a perspective of application of mathematical methods in particle physics, a history of
Mellin-Barnes integrals starts with the work "Om definita integraler" [1] in which a so-called Mellin
transform has been considered

M [ f ](s) =
∫

∞

0
dxxs−1 f (x). (1.1)

Here f (x) is a locally integrable function where x is a positive real number and s is complex in
general.

A few years later another paper appeared by Barnes, "The theory of the gamma function" [2].
What is nowadays commonly called the Mellin-Barnes representation is a merge of the above two:
a sum of terms is replaced by an integral representation on a complex plane

1
(A+B)λ

=
1

Γ(λ )

1
2πi

∫ +i∞

−i∞
dzΓ(λ + z)Γ(−z)

Bz

Aλ+z . (1.2)

This relation has an immediate application to physics, for instance, a massive propagator can
be written as

1
(p2−m2)a =

1
Γ(a)

1
2πi

∫ +i∞

−i∞
dzΓ(a+ z)Γ(−z)

(−m2)z

(p2)a+z . (1.3)

The upshot of this change is that a mass parameter m merges with a kinematical variable p2

into the ratio
(
−m2

p2

)z
, effectively the integral becomes massless. Examples how to solve simple

Feynman diagrams using this relation can be found in the textbook [3]. In more complicated multi-
loop cases the introduction of Feynman integrals appears useful

GL[T (k)] =
1

(iπd/2)L

∫ ddk1 . . .ddkL T (k)
(q2

1−m2
1)

ν1 . . .(q2
i −m2

i )
ν j . . .(q2

N−m2
N)

νN
(1.4)

=
(−1)Nν Γ

(
Nν − d

2 L
)

∏
N
i=1 Γ(νi)

∫ 1

0

N

∏
j=1

dx j xν j−1
j δ (1−

N

∑
i=1

xi)
U(x)Nν−d(L+1)/2

F(x)Nν−dL/2 PL(T ).

In a next step, by generalization of Eq. (1.2) the elements of the Symanzik polynomials F and U
are transformed into MB representations. This procedure has been automatized initially in [4].

In Eq. (1.2), applied to Eq. (1.4), the Gamma functions play a pivotal role, changing the
original singular structure of propagators into another one.

To our knowledge in Quantum Field Theory the Mellin transform has been used for the first
time in [5]. Later on, in the seventies of the last century, Mellin-Barnes integrals have been used
in the context of asymptotic expansion of Feynman amplitudes in [6] and Mellin-Barnes contour
integrals have been further investigated for finite three-point functions in [7], followed by further
related work [8, 9, 10]. However, in terms of mass production of new results in the field, a real
breakthrough came by the end of the last millenium when the infra-red divergent massless planar
two loop box has been solved analytically using MB method [11], followed in the same year by the
non-planar case [12].
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Presently there are several public software packages for the application of MB integrals in
particle physics calculations. On the MB Tools webpage [13] the following codes related to the MB
approach can be found:

• The AMBRE project [4, 14, 15] – for the creation of MB representations. The present AMBRE
versions are:

1. v1.3 - manual approach, useful for testing

2. v2.1 - complete, automatic approach for planar diagrams (some Mathematica bugs
fixed, improvements concerning factorizations of the Symanzik polynomials) – the
loop-by-loop approach (LA method)

3. v3.1 - non-planar diagrams [16, 17] (efficient two-loop constructions and some 3-loop
diagrams) – the global approach (GA method)

Appropriate Mathematica examples for MB constructions and improvements can be found in
[15], fully automatic three-loop version for non-planar cases is under development.

It is clear that to decide between LA and GA methods, knowledge of the planarity of integrals
is needed. For this the PlanarityTest.m package [18, 19] is used which gives FALSE or TRUE
output concerning planarity of a given diagram.

• MB by M. Czakon [20] and MBresolve by V. Smirnov [21] – for the analytic continuation
of Mellin-Barnes integrals in ε;

• MBasymptotics by M. Czakon – for the parametric expansion of Mellin-Barnes integrals;

• barnesroutines by D. Kosower – for the automatic application of the first and second
Barnes lemmas;

At the last Loops and Legs conference a strategy for possible analytical solutions of MB in-
tegrals was outlined using the MBsums package which changes MB integrals into infinite sums
[16]. However, till now there is no real breakthrough in this approach, especially when many-scale
integrals are concerned. Convergence and summation of an obtained MB sums is intricated [22],
even for two-dimensional cases [23]. To use the MB method further on, and applying it to physical
processes, if possible in a completely automatic way, we have changed the strategy and started to
work on an efficient and purely numerical calculation of MB integrals in the Minkowskian region.

It is not accidental that in the title the word "region" in plural appears in the context of the
Minkowskian kinematics. In various kinematic regions specific difficulties emerge in calculation
of Feynman integrals due to threshold effects, singularities or several mass parameters involved.
So, these objects are in general hard in numerical evaluation, though many less (NLO) or more
general approaches exist to deal with the problem. They are based on tree-duality, generalized
unitarity, reductions at the integrand level, improved diagrammatic approach and recursion rela-
tions applied to higher-rank tensor integrals, simultaneous numerical integration of amplitudes over
the phase space and the loop momentum, contour deformations, expansions by regions, sector-
decomposition. For more general reviews see [3, 24, 25]. At the one-loop level the situation is
much simpler and advanced software exists, applied already to many physical processes, such as
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FeynArts/FormCalc [26, 27], CutTools [28], Blackhat [29], Helac-1loop [30], NGluon [31], Samu-
rai [32], Madloop [33], Golem95C [34], GoSam [35], PJFry [36] and OpenLoops [37]. Some of
them are necessarilly supported by basic one-loop integral libraries [38, 39, 40, 41].

Going beyond the one-loop level, so far only few numerical packages are able to deal with
Minkowskian regions. The most advanced programs are based on the sector decomposition ap-
proach, Fiesta 4 [42], SecDec 3 [43]. NICODEMOS [44] is based on contour deformations. There
are also complete programs dedicated specifically to the precise calculation of two-loop self-energy
diagrams [45, 46]. These are so far the only public numerical multiloop projects where calcula-
tion in Minkowskian regions is feasable, some other proposals have been anounced for instance in
[47, 48, 49, 50, 51].

2. Automation in calculations of Mellin-Barnes integrals

Thanks to the MB.m package [20], Mellin-Barnes integrals have been used intensively as nu-
merical cross checks for analytical results obtained in numerous works. Such checks are easily
possible in Euclidean space. The first trial in the direction of numerical integration of MB integrals
in Minkowskian space was undertaken in [52]. The method developed there based on rotations
of integration variables in complex planes has been applied successfully to the calculation of two-
loop diagrams with triangle fermion subloops for the Z→ bb formfactor [53]. Another approach to
numerical integration was considered in [54] where the steepest descent method was explored for
stationary point contours. It is an interesting direction, though no clear way has been worked out
so far for higher dimensional integrals. Let us mention that yet another interesting numerical appli-
cation of MB integrals for phase space integrations can be found in [55] and [56, 57]. There some
parametric integrals are considered and transformations of MB integrals into Dirac delta constraints
have been explored.

In these proceedings a new approach to the numerical calculation of MB integrals is presented
which has been developed during the work on the Z→ bb vertex, aiming in evaluation of complete
two-loop electroweak corrections to this process, see [58, 59]. Historically, the MB.m package has
been developed and first applied in the Bhabha massive QED 2-loop calculations, as a cross-check
for analytical Master Integrals and their asymptotic expansions [60, 61, 62, 63]. From the point of
view of MB integrals, the Z → bb project is more challenging. It gives 3 dimensionless scales in
a specific Minkowskian region (s = M2

Z) with a variance of masses MZ,MW ,mt ,MH involved and
intricate threshold effects.

There are about O(103) scalar and tensor integrals to be worked out for the two-loop elec-
troweak Z→ bb amplitude1 so automation is necessary, which goes in two basic steps:

1. Construction of MB representations and analytic continuations;

2. Numerical integrations.

In the first step, to remind in short the AMBRE project [4, 15], for planar cases the automatic
derivation of MB integrals by AMBRE is optimal using the so-called loop-by-loop approach (LA).

1Initial tensors of rank 5 and 4 are reduced easily to objects of maximally rank 3 tensors [58, 59].
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There, the simple one-loop U = 1 in each iterative loop is secured by definition, and concern is on
effective F polynomial factorization with minimal number of terms. Presently the newest version
is AMBRE v2.1 [15]. In the global approach (GA) which is used in non-planar cases, both the F and
U polynomials are changed into MB representations with help of Eq. (1.2) just in one step. On the
way a suitable change of Feynman variables is made and the Cheng-Wu theorem is used. Presently
the newest version is AMBRE v3.1 [15].

Beyond two-loops, one may choose a hybrid approach which treats planar subloops separately.
For such cases AMBRE v3.1 may be used [15]. For other 3-loop cases the semi-automatic AMBRE
v1.3 may help (user can manipulate itself on optimizing F polynomials manually; without that
typically of the order of 20-dimensional MB integrals emerge.

Finally, all the new AMBRE versions have an option to construct MB-integrals in dimensions
different from d = 4−2ε . An example is given in [15].

In the second step, a completely new software MBnumerics.m has been used [64]. In the
next section some core ideas which made possible to calculate MB integrals in Minkowskian regions
used in MBnumerics.m are given.

3. Direct numerical integrations of MB integrals in Minkowskian regions.

3.1 Basic Problems

MB integrals when treated numerically in Minkowskian regions suffer from two kinds of po-
tential problems connected with

I. Bad oscillatory behavior of integrands;

II. Fragile stability for integrations over products and ratios of Gamma (Γ) functions.

The problem has been discussed initially in [20] using a two-loop example factorizing into
QED massive vertex integrals

V (s) =
eεγE

iπd/2

∫ ddk
[(k+ p1)2−m2][k2][(k− p2)2−m2]

=
V−1(s)

ε
+V0(s)+ · · · (3.1)

In the above equation the Laurent series expansion of the integral in ε , d = 4−2ε is given. To
see the problem, it is enough to look at the leading divergent integral V−1(s), which, translated into
the MB representation, takes the following form, with m = 1,s = (p1 + p2)

2:

V−1(s) = − 1
2s

− 1
2+i∞∫

− 1
2−i∞

dz
2πi

(−s)−z︸ ︷︷ ︸
Part I

Part II︷ ︸︸ ︷
Γ3(−z)Γ(1+ z)

Γ(−2z)
(3.2)

Parts I and II refer to basic numerical problems of the general MB integrals connected with
kinematical variables and masses of propagators involved. For instance, for diagrams with massless
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propagators, the Gamma functions in MB integrals include arguments with single variables while in
massive cases some of them are multiplied by 2, as in the denominator of Eq.(3.2). Fortunately, this
massive integral is known in an analytical form for long. Nowaday even computer algebra systems
like Mathematica can do the job, and summing up residues of Eq. (3.2) we get

V−1(s) =
1
2

∞

∑
n=0

sn(2n
n

)
(2n+1)

=
2arcsin(

√
s/2)√

4− s
√

s
. (3.3)

So, we can test numerically some basic ideas connected with contour deformations. Let us
parameterize integral Eq. (3.2) as

z = ℜ[z]+ i t, t ∈ (−∞,+∞) (3.4)

where ℜ[z] is chosen in three different ways (see Fig. 1):

z(t) = x0 + it : VC1
−1(s) =

∫ +∞

−∞

(i) dt J[z(t)], (3.5)

z(t) = x0 +θ t + it : VC2
−1(s) =

∫ +∞

−∞

(θ + i) dt J[z(t)], (3.6)

z(t) = x0 +at2 + it : VC3
−1(s) =

∫ +∞

−∞

(2at + i) dt J[z(t)]. (3.7)
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t

ℜ[z]

α

�

Figure 1: Integration contours chosen for the real part of the complex variable z defined in Eqs. (3.2),(3.4)
and Eqs. (3.5)-(3.7). For C2 α = arctan( 1

θ
). Deformation from C1 to C2 or C3 does not cross poles (black

dots).

The accuracy of the results of integration at some Minkowskian point depends strongly on the
chosen contour. For instance, taken s = 2, Eq. (3.3) gives an exact result (which is purely real)
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V−1(2)|analyt. =
π

4
= 0.78539816339744830962. (3.8)

If we try to find a numerical solution directly to the integral Eq. (3.2) by trying to control
oscillatory behavior of the integrand using special algorithms, like the Pantis method, as in [20],
the obtained result estimated this way is V−1(2)|MB.m

Pantis = 0.7925− 0.0225 i. It is obviously not an
acceptable result for further use.

Let us estimate the result using contours C1,C2,C3. We get

V−1(2)|C1 = 4.4574554985139977188+4.5139812364645122275 i (3.9)

V−1(2)|C2 = 0.7853981633859819−5.420140575251864 ·10−15 i (3.10)

V−1(2)|C3 = 0.7853981632958756+2.435551760271437 ·10−15 i. (3.11)

As we can see, taking countours C2 and C3 and comparing numerical results with Eq. (3.8),
already 10-12 digits of accuracy for the integration can be obtained. Similar accuracy can be
obtained for other points in the Minkowskian region above the second threshold, s > 4.

3.2 Basic methods and tricks for accurate numerical integrations

We experienced three main methods to integrate efficiently MB integrals, namely

I. Specific integration methods for oscillating integrands;

II. Integration contour deformations;

III. Integration contour shifts.

As discussed and shown in the last section, method I is not effective for numerical treatment
of MB integrals in physical regions (and it is known that it is a complicated issue, see for instance
[65]) and the method II is limited, though it may be quite effective for 1-dimensional cases.

Method III is new, and as will be shown, it is an effective and programmable method, even for
numerical calculation of multi-dimensional MB integrals.

Method III. The idea.

The idea of contour shifts is rather plain and straigthforward. Imagine we have some MB

integral with fixed real parts of complex integration variables zi (as it is usually the case, such MB
representations are available using AMBRE and MB.m). We then shift one or more variables zi by
multiply integer numbers. By virtue of Gamma functions and kinematics involved, a new, "shifted"
MB integral is obtained, plus a bunch of residue integrals from controlled crossing of poles. The
aim is to get a shifted original integral whose absolute magnitude, by virtue of applied shifts, is
smaller and smaller. How far we go with shifts (so going down in magnitude of the original MB
integral) depends on which accuracy of the final numerical result we aim at. The remaining residue
MB subintegrals after shifts are of lower MB dimension. The procedure is iterative. In a next step
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MB residue integrals of lower MB dimensions can be treated the same way. When a procedure
is terminated depends on the accuracy of the generated residue MB integrals and on the desired
accuracy for the original MB integral. In passing, there can be large numerical cancellations among
numerically equal subintegrals of different sign, which must be also controlled properly.

As an illustrative example of the efficiency of shifts, let us take the two-dimensional integrand

J(z1,z2) =
2(− s

M2
Z
)−z1−z2Γ[−1− z1−2z2]Γ[−z1− z2]Γ[−z2]Γ[1+ z2]

3Γ[1+ z1 + z2]

s2Γ[1− z1]
(3.12)

and start with the contour of integration C1, Eq. (3.5), where ℜ[z1] = z10 = 0, ℜ[z2] = z20 =−0.7.
It is interesting to note that at the the kinematic point s/M2

Z = 1+ iε (ε is an arbitrarily small
parameter chosing the correct sheet), which is a point explored in the Z → bb studies [58, 59],
shifts works well. To see this, we shift z2 variable, z2 = z20 + n. The integral is now a discrete
function of the number of shifts n:

IC1(s,MZ,n) =
+∞∫
−∞

+∞∫
−∞

(i)2J(z10 + it1,z20 +n+ it2)dt1dt2. (3.13)

Using Stirling’s formula

Γ(z) =
√

2π e−z zz−1/2
(

1+
1

12z
+

1
288z2 −

139
51840z3 −

571
2488320z4 + · · ·

)
(3.14)

and the relation ln(−|R|)→ ln(−|R| ± iε) = ln(|R|)± i π the worst asymptotic behavior for the
integrand is for t1→−∞, t2→ 0:

J(z10 + it1,z20 +n+ it2)' t−2−2(z20+n)
1 . (3.15)

For n = 0 and z20 = −0.7, the integrand J(z1,z2) drops off like t−0.6
1 . This slow convergence

is similar to the QED massive vertex, discussed above. However, increasing n, the module of the
integrand becomes smaller, making possible to get it arbitrarily small, see Fig. 2.

We can see that the shifts improve the asymptotic behavior and reduce the order of magnitude
of the integral IC1(s,MZ,n). The absolute and the module of an imaginary part of IC1(s,MZ,n)
behave similarly.

Automatic algorithms for finding the suitable shifts and contour deformations are imple-
mented in MBnumerics.m [64]. At the moment an effective strategy is: Starting from original
n−dimensional MB integrals, MBnumerics.m looks for well converging n− 1 and n− 2 integrals,
and remaining n−dimensional integrals. Up to 4-dimensional integrals, the deterministic Cuhre
method of the CUBA package [66, 67] can be used. In this way accuracy of calculation can be
controlled.

At the moment it appears that linear contour deformations as in Eq. (3.6) are sufficient (in
[25, 52] they are called contour rotations) for the evaluation of shifted and residue integrals, when
merged with another trick, namely mapping of variables in integrands. Contour C3 is the basic
contour used for an evaluation of 1-dim integrals.
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n

1
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0.0001

0.00001

1.×10-6

Abs(Re(I(n)))

Printed by Wolfram Mathematica Student Edition

t−2.6
1

t−4.6
1 t−6.6

1
t−8.6
1

t−10.6
1

t−12.6
1

t−14.6
1

t−16.6
1

t−18.6
1 t−20.6

1

Figure 2: Module of real part of the integral IC1(s,MZ ,n) as a function of n.

Figure 3: Logarithmic mapping for the integrand in Eq. (3.17) . On left (right) real (imaginary) part of the
integral is given.

Mapping of variables is necessary, making possible the numerical integration of integrals over
finite regions. At the same time the numerical stability of integrations is improved. In [20] a
logarithmic mapping has been used

zi = xi + i ln
(

ti
1− ti

)
, ti ∈ (0,1), Jacobian : Ji(ti) =

1
ti(1− ti)

. (3.16)

Unfortunately, the curvature rules of Cuhre cannot approximate integrands with a power law
1/ti behaviour, which is exactly what may happen at the boundaries of the unit hypercube, due to
the Jacobians (3.16). An example for such a problematic integral defined in Eq. (3.17) is given in
Fig. 3.

I =

− 1
3+i∞∫

− 1
3−i∞

dz1

− 2
3+i∞∫

− 2
3−i∞

dz2

(
−s
M2

Z

)−z1
Γ[−z1]

3Γ[1+ z1]Γ[z1− z2]Γ[−z2]
3Γ[1+ z2]Γ[1− z1 + z2]

s Γ[1− z1]2Γ[−z1− z2]Γ[1+ z1− z2]

(3.17)
Instead of a logarithmic, a tangent mapping is used in MBnumerics.m:

9
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Figure 4: Tangent mapping for the integrand in Eq. (3.17) . On left (right) real (imaginary) part of the
integral is given.

zi = xi + i
1

tan(−πti)
, ti ∈ (0,1), Jacobian : Ji =

π

sin2 [(πti)]
.

Comparing Fig. 3 and Fig. 4, even with naked eye one can see that tangent mapping does
not give boundary instabilities and the integrand is relatively smooth. To improve the stability of
numerical integrations further, in addition, Πi Γi→ e∑i lnΓi transformation helps considerable.

As already said, shifts come with mappings and contour deformations and MBnumerics.m
uses linear contour deformations (rotations), Eq. (3.6). The point is that a linear change of variables
introduces an additional exponential factor which, chosen properly, may help to damp integrand
oscillations. Using this transformation no poles of Gamma functions are crossed as the rotation is
applied to all MB integration variables at once, first noted in [52]. To see how to choose the rotation
parameter properly to get damping factors, let us consider the asymptotic behaviour of the integral
Eq. (3.2) using Eq. (3.14).
Part I in Eq. (3.2) for the contour C1 gives

(−s)−(x0+it) = (s)−(x0+it)(−1− iε)−(x0+it) = (s)−(x0+it)eiπx0e−πt . (3.18)

We can see that if t→−∞ the last exponential factor explodes. Fortunately, from Part II of
Eq. (3.2), we get

ℜ

[
Γ3[−x0− it]Γ[x0 + it]

Γ[2(x0 + it)]

]
' 2π

3/2
√∣∣∣s

t

∣∣∣e−π|t|. (3.19)

The numerator cancels out an exponential factor in Eq. (3.18), though the badly convergent part
t−1/2 remains. It can be stabilized further by rotating the z variable by some angle α(θ), see Fig. 1

z = x0 + it→ x0 +(θ + i)t. (3.20)

Now, the complete result for Eq. (3.2) can be cast in the following way

ℜ

[
lim
|z|→∞

V−1(s)
]
∼ 2π

3/2 4
√

θ 2 +1
√∣∣∣s

t

∣∣∣e−π|t|+t arg(−s)+θ t log( 4
s ), s = ℜ[s]+ iε, (3.21)

10
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where

arg(−s) =


−π, ℜ[s]> 0,

−π/2, ℜ[s] = 0,

0, ℜ[s]< 0,

(3.22)

It can be seen easily that for any value of the kinematical variable s 6= 4 and s 6= 0 the θ

parameter can be chosen to make the real part of the exponents argument negative2, for instance,
for s = 1+ iε the condition is

0 < θ <
π

log(2)
. (3.23)

Let us look for some more complicated, two-dimensional example of contour deformations:

J(z1,z2) =

(
M2

W
M2

T

)z2
s2
(
− s

M2
T

)z1−z2
Γ[−z1]Γ[z1]Γ[2− z2]Γ[4+ z1− z2]Γ[z2]Γ[−z2])

4M4
T Γ[6+ z1−2z2]

. (3.24)

The integral will be integrated over C1:

KC1(s,MW ,MT ) =

+∞∫
−∞

+∞∫
−∞

(i)2J(z10 + it1,z20 + it2)dt1dt2, z10 = 0.7, z20 =−1.2, (3.25)

and over C2:

KC2(s,MW ,MT ) =

+∞∫
−∞

+∞∫
−∞

(i+θ)2J(z10 +(i+θ)t1,z20 +(i+θ)t2)dt1dt2, z10 = 0.7, z20 =−1.2.

(3.26)

The worst asymptotic behavior of the integrand JC1 takes place for t1→ 0, t2→−∞

J(z10 + t1,z20 + t2)' t−
3
2

2 . (3.27)

Thus the integral KC1 is very slowly convergent. Taking s = M2
Z and θ = 0.7, the asymptotic

behavior of the integrand JC2 is like in the Euclidean case and the numerical evaluation of KC2

yields honest high accuracy. In Fig. 5 real parts of the integrand J evaluated over contours C1 and
C2 are given.

3.3 MBnumerics.m, present situation

The algorithm has been applied succesfully so far to up to four-dimensional MB integrals with
the desired accuracy (8 digits). In calculations, the AMBRE constructions are not the main issue as
far as time of calculation is concerned. For numerical results, time consuming is the determination
of optimal contours where the proper grid for threshold kinematics and the treatment of tails of

2For s = 4, the integral V−1(s) must be considered together with the threshold factor
√

1− 4
s .

11
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Figure 5: Real part of the integrand J defined in Eq.(3.22) evaluated over contours C1 and C2. T1 and T2 are
integration variables due to a tangent mapping: ti = 1/ tan[−πTi].

integrands bother. The second time factor is connected with numerical integration over the opti-
mal contours. To get high accuracy, the optimal strategy is to treat MB integrals with maximal four
dimensions, and to use Cuhre, which is not a Monte Carlo, but a deterministic algorithm [67]. A de-
cent precision can be obtained in this way. For some specific cases MB integrals have been initially
reduced using KIRA package [68], followed by their numerical evaluation with MBnumerics.m.

Finally, we give as another example the constant part of the 3-dimensional integrand Eq. (3.28)
drawn in Fig. 6

(−s)−2ε−z2−2 (m2)z2
Γ[−ε]Γ[−z1]Γ[−z2]Γ[−z3]Γ

2[z3 +1]Γ[−ε− z1]Γ[−ε− z2]Γ[z1 + z3 +1]

×Γ[−2ε− z1− z3−1]Γ[−2ε− z2− z3−1]Γ[−2ε− z1− z2− z3−1]Γ[2ε + z1 + z2 + z3 +2]
Γ[−2ε− z1]Γ[−3ε− z2]Γ[−2ε− z2]Γ[−2ε− z1− z2]

,

(3.28)

which shows how powerful MBnumerics.m can be. In this case, results obtained with different
available methods and programs in the Euclidean region are the following,−(p1+ p2)

2 = m2 = 1:

Analytical : −0.4966198306057021
MB(Vegas) : −0.4969417442183914
MB(Cuhre) : −0.4966198313219404
FIESTA : −0.4966184488196595
SecDec : −0.4966192150541896

For the Minkowskian region, (p1 + p2)
2 = m2 = 1+ iε , constant part:

Analytical : −0.778599608979684−4.123512593396311 · i
MBnumerics : −0.778599608324769−4.123512600516016 · i
MB(Vegas) : big error
MB(Cuhre) : NaN
FIESTA : big error
SecDec : big error

12
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- p1 - p2

@ k1 , 0 D

@ k1 + p1 + p2 , 0 D

p1

@ k1 - k2 , 0 D

@ k1 - k2 + p1 , m D

p2

@ k2 , 0 D

@ k2 + p2 , 0 D

Figure 6: Non-planar vertex with one massive crossed line. Figure generated by PlanarityTest [19,
18].

For more examples and comparisons, see [58, 69].

4. Summary

We have summarized the present status of the AMBRE project for the construction of MB inte-
grals. New versions of the package for planar and non-planar integrals are given.

The new package MBnumerics.m has been discussed in which MB integrals can be evaluated
numerically in a Minkowskian region. Oscillatory behaviour of MB integrals is treated by shifts
of variables, stabilility of integrals is further improved by contour deformations and mapping of
variables. Shifts of contours are so powerful that sometimes the method alone is sufficient to obtain
high accuracy. Difficult cases like thresholds are also treatable now. For Z→ bb, MBnumerics.m
turned out to be a very strong and effective tool [58, 59].
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