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1. Introduction

One of the important tasks of modern high-energy particle physics is the development of new
methods to compute quantum corrections to physical cross sections. This is particularly important
in the context of Quantum Chromodynamics (QCD) where higherorder corrections often have
a significant numerical impact. Here we discuss the evaluation [1] of a next-to-next-to-next-to-
next-to-leading order (N4LO) contribution to a three-point function within QCD. We consider the
photon-quark form factor, which is a building block for N4LO cross sections. Namely, it is a
gauge-invariant part of virtual forth-order corrections for the processe+e− → 2 jets, or for Drell-
Yan production at hadron colliders.

Let Γµ
q be the photon-quark vertex function. Then the scalar form factor is defined by

Fq(q
2) = −

1
4(1− ε)q2Tr

(

p2/ Γµ
q p1/ γµ

)

, (1.1)

whereD= 4−2ε is the space-time dimension,q= p1+ p2 andp1 (p2) is the incoming (anti-)quark
momentum. We consider the leading order of the large-Nc expansion ofFq(q2). As a result we only
have to consider the contributions of planar Feynman diagrams.

Results forFq can be used to probe the infrared structure of gauge theories. Form factors
encapsulate universal infrared contributions coming fromsoft exchanges between two partons. The
general form of the latter is known [2, 3, 4, 5, 6, 7] and depends on cusp and collinear anomalous
dimensions.

Two-loop corrections toFq have been computed more than 25 years ago [8, 9, 10, 11]. The first
three-loop result has been presented in Ref. [12] and has later been confirmed in Ref. [13]. Analytic
results for the three-loop form factor integrals were presented in Ref. [14]. In Ref. [15], the results
of Ref. [14] have been used to computeFq at three loops up to orderε2, i.e., transcendental weight
eight, as a preparation for the four-loop calculation.

In our calculation we obtain the fermionic corrections toFq in the large-Nc limit, to the four-
loop order. Let us emphasize that the time passed between theevaluation of three-loop corrections
and the first four-loop correction is essentially less than the corresponding difference between two-
and three-loop calculations. It looks like this happened because of the development of powerful
methods to evaluate multiloop Feynman integrals.

Other attempts to calculate similar form factors or master integrals were reported on in Refs. [16,
17, 18]. The evaluation of the master integrals in Refs. [16,17] was performed only by numerical
methods while Ref. [18] presents results only for some individual integrals in an analytical form.

In the next section we briefly outline our calculation and present results for the form factor and
for the cusp and collinear anomalous dimensions. The next section is dedicated to the classification
and evaluation of the master integrals. Then we present our conclusions.

2. Results

We generate the Feynman amplitudes with the help ofqgraf [19] and transform the output to
FORM [20, 21] notation usingq2e andexp [22, 23]. For the reduction to master integrals we use
the programFIRE [24, 25, 26] which we apply in combination withLiteRed [27, 28]. Relations
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between primary master integrals occurring in the reduction tables are revealed with the help of
tsort, which is part of the latestFIRE version [26], and based on ideas presented in Ref. [25].
This leads to 78 master integrals needed for the fermionic part. More generally, we find that a
total of 99 master integrals are sufficient for arbitrary planar integrals. They are all computed as
described in the next section.

In our calculation we allow for a generic QCD gauge parameterξ and expand the Feynman
diagrams aroundξ = 0, which corresponds to Feynman gauge, up to linear order. Wechecked that
ξ drops out before inserting explicit results for the master integrals.

In the following we present results for the form factorFq and the related anomalous dimen-
sions. Fq is conveniently shown in terms of the bare strong coupling constant. In that case the
perturbative expansion ofFq can be cast in the form

Fq = 1+ ∑
n≥1

(

α0
s

4π

)n( µ2

−q2

)(nε)

F(n) .
q (2.1)

Analytic results forF(n)
q , with n≤ 3, expanded inε up to transcendental weight eight can be found

in Ref. [15]. We refrain from repeating them here.

The main result of this letter is the fermionic contributionto F(4)
q in the large-Nc limit. It is

given by

F(4)
q |large-Nc =

1
ε7

[

1
12

N3
cnf

]

+
1
ε6

[

41
648

N2
cn2

f −
37
648

N3
cnf

]

+
1
ε5

[

1
54

Ncn
3
f +

277
972

N2
cn2

f

+

(

41π2

648
−

6431
3888

)

N3
cnf

]

+
1
ε4

[

(

215ζ3

108
−

72953
7776

−
227π2

972

)

N3
c nf

+
11
54

Ncn
3
f +

(

5
24

+
127π2

1944

)

N2
cn2

f

]

+
1
ε3

[

(

229ζ3

486
−

630593
69984

+
293π2

2916

)

N2
cn2

f

+

(

2411ζ3

243
−

1074359
69984

−
2125π2

1296
+

413π4

3888

)

N3
cnf +

(

127
81

+
5π2

162

)

Ncn
3
f

]

+
1
ε2

[

(

−
41ζ3

81
+

29023
2916

+
55π2

162

)

Ncn
3
f +

(

11684ζ3

729
−

41264407
419904

−
155π2

72

+
2623π4

29160

)

N2
c n2

f +

(

−
537625ζ3

11664
−

599π2ζ3

486
+

12853ζ5

180
+

155932291
839808

−
27377π2

69984
−

1309π4

7290

)

N3
cnf

]

+
1
ε

[

(

−
451ζ3

81
+

331889
5832

+
635π2

243
+

151π4

4860

)

Ncn
3
f

+

(

661ζ3

4
−

1805π2ζ3

729
+

19877ζ5

405
−

608092805
839808

−
6041473π2

209952
+

8263π4

21870

)

N2
cn2

f

+

(

−
5427821ζ3

5832
+

48563π2ζ3

2916
−

1373ζ 2
3

324
+

12847ζ5

810
+

662170621
279936

+
17271517π2

209952

2
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−
78419π4

25920
+

21625π6

81648

)

N3
c nf

]

+

[

(

−
10414ζ3

243
−

205π2ζ3

243
−

1097ζ5

135
+

10739263
34992

+
145115π2

8748
+

1661π4

4860

)

Ncn
3
f +

(

65735207ζ3

52488
−

4262π2ζ3

2187
−

71711ζ 2
3

1458

+
725828ζ5

1215
−

68487272627
15116544

−
295056623π2

1259712
−

889π4

6480
+

43559π6

204120

)

N2
cn2

f

+

(

−
1774255975ζ3

209952
+

265217π2ζ3

3888
−

2692π4ζ3

3645
+

973135ζ 2
3

1458
−

56656921ζ5

19440

−
58657π2ζ5

1620
+

1643545ζ7

1008
+

555003607961
30233088

+
785989381π2

839808
−

34077673π4

2099520

−
146197π6

612360

)

N3
c nf

]

+ . . . , (2.2)

where the ellipses stand fornf -independent contributions.
The cusp and collinear anomalous dimension is convenientlyextracted from log(Fq) (after

renormalization ofαs). The coefficients of the cusp and collinear anomalous dimensions are de-
fined through

γx = ∑
n≥0

(

αs(µ2)

4π

)n

γn
x , (2.3)

with x∈ {cusp,q}.
The anomalous dimensionγcusp can be extracted from the coefficient of the quadratic, andγq

from the first-order pole inε . In the large-Nc limit we obtain forγcusp

γ0
cusp = 4,

γ1
cusp =

(

−
4π2

3
+

268
9

)

Nc−
40nf

9
,

γ2
cusp =

(

44π4

45
+

88ζ3

3
−

536π2

27
+

490
3

)

N2
c +

(

−
64ζ3

3
+

80π2

27
−

1331
27

)

Ncnf

−
16n2

f

27
,

γ3
cusp =

(

−
32π4

135
+

1280ζ3

27
−

304π2

243
+

2119
81

)

Ncn
2
f +

(

128π2ζ3

9
+224ζ5−

44π4

27

−
16252ζ3

27
+

13346π2

243
−

39883
81

)

N2
cnf +

(

64ζ3

27
−

32
81

)

n3
f + . . . . (2.4)

where the ellipses inγ3
cusp indicate non-nf terms which are not yet known. Forγq we have

γ0
q = −

3Nc

2
,

γ1
q =

(

π2

6
+

65
54

)

Ncnf +

(

7ζ3−
5π2

12
−

2003
216

)

N2
c ,

γ2
q =

(

−
π4

135
−

290ζ3

27
+

2243π2

972
+

45095
5832

)

N2
cnf +

(

−
4ζ3

27
−

5π2

27
+

2417
1458

)

Ncn
2
f
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+N3
c

(

−68ζ5−
22π2ζ3

9
−

11π4

54
+

2107ζ3

18
−

3985π2

1944
−

204955
5832

)

,

γ3
q = N3

c

[(

−
680ζ 2

3

9
−

1567π6

20412
+

83π2ζ3

9
+

557ζ5

9
+

3557π4

19440
−

94807ζ3

972
+

354343π2

17496

+
145651
1728

)

nf

]

+

(

−
8π4

1215
−

356ζ3

243
−

2π2

81
+

18691
13122

)

Ncn
3
f +

(

−
2
3

π2ζ3

+
166ζ5

9
+

331π4

2430
−

2131ζ3

243
−

68201π2

17496
−

82181
69984

)

N2
cn2

f + . . . . (2.5)

The expressions in Eqs. (2.4) and (2.5) up to three-loop order confirm the results in the litera-
ture [30, 31, 32, 33, 12, 29, 13] and theN3

c n3
f term ofγ3

cusp agrees with the result of Ref. [34, 35].
All other terms in the four-loop resultsγ3

cusp and γ3
q are new. The constantn2

f term of γ3
cusp in

Eq. (2.4) is also in agreement with a recent calculation of Ref. [36].

3. Evaluating master integrals

In our calculation, we are dealing with the following familyof planar Feynman integrals:

Fa1, . . . ,a18 =

∫

. . .

∫

dDk1 . . .dDk4

(−(k1+ p1)2)a1(−(k2+ p1)2)a2(−(k3+ p1)2)a3(−(k4+ p1)2)a4

×
1

(−(k1− p2)2)a5(−(k2− p2)2)a6(−(k3− p2)2)a7(−(k4− p2)2)a8(−k2
1)

a9(−k2
2)

a10

×
1

(−k2
3)

a11(−k2
4)

a12(−(k1−k2)2)a13(−(k1−k3)2)a14(−(k1−k4)2)a15

×
1

(−(k2−k3)2)a16(−(k2−k4)2)a17(−(k3−k4)2)a18
. (3.1)

with p2
1 = p2

2 = 0, q2 ≡ p2
3 = (p1+ p2)

2. This family can be decomposed into several subfamilies
whete certain subsets of the 12 indices can be positive.

After solving integration-by-parts identities [37] with the latest version of the programFIRE [24,
25, 26] we reveal 99 master integrals. To evaluate them analytically we follow the idea of Ref. [38]
and introduce an additional scale considering one more leg off the light cone, i.e. p2

2 6= 0. This
enables us to apply the powerful machinery of the method of differential equations [39, 40, 41, 42]
by deriving and then solving differential equations with respect tox= p2

2/p2
3.

For this family of integrals which are functions ofx, FIRE gives 504 master integrals. Then
we follow the strategy of Ref. [42] (see also [43]) where it was suggested to turn to a so-called
canonical basis. We used the recipes formulated in [42, 43] to achieve this goal. In particular, it s
helpful to select basis integrals that have constant leading singularities [44].

The system of differential equations in our canonical basisf has the following form

∂x f (x,ε) = ε
[

a
x
+

b
1−x

]

f (x,ε) , (3.2)

wherea and b are some constant (i.e.x- and ε-independent) 504× 504 matrices. The special
features of this form are the manifest Fuchsian property of the singularities, i.e. only single poles
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in x= 0,1,∞ are present on the right-hand side of Eq. (3.2), and the fact that the right-hand side
is proportional toε . The latter property can be achieved for iterated integrals. Here, it implies that
the solution, to any order inε , can be written in terms of iterated integrals over the kernels dx/x
and dx/(x−1), i.e. in terms of harmonic polylogarithms [45].

We fix the boundary values atx= 1 by demanding regularity of the integrals in this limit and
using explicit results for some propagator type integrals.They can be determined easily: in most
cases, the boundary value is zero due to kinematical factors. Otherwise one can use results for
propagator type integrals available in the literature, see, in particular, four-loop analytic results in
[46, 47, 48].

We then use the differential equation (3.2) to transport this boundary value back tox= 0. (In
mathematical language, we construct the Drinfeld associator, perturbatively inε .) Finally, unlike
the x → 1 limit, the x → 0 limit is singular, in the sense that the matrix exponentialxεa contains
several termsxεα , with α 6= 0. These non-zero values ofα correspond to contributions of various
regions [49, 50, 51] to the asymptotic expansion in the givenlimit. The on-shell integrals we would
like to compute correspond to the so-called “hard” region with α = 0.

In order to determine to the on-shell integrals, we reduce the basisf for on-shell kinematics,
expressing it in terms of 99 on-shell master integrals. We then match the expression so obtained
to the hard region atx= 0. We find that this determines all the 99 integrals (naturally, some of the
504 equations are redundant). In order to carry out these algebraic manipulations, we successfully
applied the Mathematica packageHPL.m [52].

Our results for all the master integrals, both with two legs on the light cone and with one leg
on the light cone will be published elsewhere. This is an example of our result for the integral
F0,0,1,1,1,1,0,1,0,1,1,−2,1,1,1,1,0,1, in the notation of Eq. 3.1,

1
576ε8 +

1
216

π2 1
ε6 +

151
864

ζ3
1
ε5 +

173
10368

π4 1
ε4 +

[

505
1296

π2ζ3+
5503
1440

ζ5

]

1
ε3

+

[

6317
155520

π6+
9895
2592

ζ 2
3

]

1
ε2 +

[

89593
77760

π4ζ3+
3419
270

π2ζ5−
169789
4032

ζ7

]

1
ε

+

[

407
15

s8a+
41820167
653184000

π8+
41719
972

π2ζ 2
3 −

263897
2160

ζ3ζ5

]

+ . . . , (3.3)

wheres8a = ∑∞
i1=1

1
i51

∑i1
i2=1

1
i32
= ζ8+ζ5,3 = 1.041785... andζ5,3 is a multiple zeta value [52].

4. Conclusion

A natural extension of this work is to apply the planar masterintegrals we computed to eval-
uate the non-fermionic planar contribution, where the integral reduction is more complicated. The
master integrals involved in this calculation are the 99 master integrals which we have already
evaluated. The integration-by-parts reduction tunrs out to be more complicated. A typical time
scale for a reduction job for a individual family of integrals (where indices for a specific subset
consisting of 12 indices in (3.1) can be positive) in the present calculation was one month while
for the non-fermionic planar contribution, more time is required. Furthermore, we expect that the
methods discussed in this paper can also be applied to non-planar form factor integrals.
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