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1. Introduction

A scalar field with quartic self-interaction is one of the simplest models in quantum field theory.
With the discovery of the Higgs boson, it is now part of the standard model of elementary particles.
However, it also appears elsewhere and in particular its application as a mean-field approximation
to statistical systems is one way to study phase transitions [41, 64, 71]. Critical exponents can be
inferred from the renormalization group functions. Therefore, perturbative calculations in φ 4 theory
have a long history and they reached a high loop order.

The 5-loop field anomalous dimension and beta function were announced already in [29] and
[25, 38]. It took ten years until a different group reproduced this calculation and revealed some
inaccuracies in [25]; corrected results were published in [39]. A complete numeric check of all these
analytic results was completed only much later in [1]. Very recently, the first 6-loop result for the
field anomalous dimension was published [7].

In this note we present the remaining renormalization group functions of φ 4 theory at 6-loop
order, for the minimal subtraction (MS) scheme in dimensional regularization. The results for
the O(N)-symmetric model and the corresponding critical exponents will be published elsewhere.
Instead, we focus here on the technical aspects and the novel tools used in our calculation. Note that
a completely independent calculation of the 6-loop beta function with a very different method has
recently been finished by Oliver Schnetz [59] and confirmed our result.

We start with the well-known representation of Z-factors in terms of massless propagators
(also known as p-integrals). The challenge is then to compute the ε-expansions of such integrals
and we refer to [41, 64, 71] for a comprehensive discussion of traditional techniques. The general
philosophy has hitherto been to exploit various relations, in particular the infrared R∗-operation
[24, 26, 30, 32], to relate the counterterms to simpler integrals. Recently, the cumbersome R∗-
operation was automated in [6]. Augmented with the results [2, 43, 61] for 4-loop p-integrals and
integration by parts (IBP) [31, 65], this traditional approach was used for the 6-loop calculation
of the field anomalous dimension [7]. This already required additional tricks for two propagators
(see section 5 in [7]), but the situation is much more severe for the 4-point diagrams contributing
to the 6-loop beta function: the method fails for 22 graphs. Of these, 10 are primitive and have
been known for long [20, 57], but the remaining 12 graphs contain subdivergences and require new
techniques. Initially we calculated these diagrams via parametric integration [21, 51] and a new
subtraction method for subdivergences (different to the one we elaborate on here), which we will
discuss elsewhere.

Instead, in this paper we present a simple new approach based on parametric integration using
hyperlogarithms [21, 22, 49] which allows us to compute the counterterms of all 6-loop 2- and
4-point graphs analytically, with the sole exception of a single graph which is, however, well-known
[20, 56, 58]. We use the MapleTM implementation HyperInt [51] of this method, which was
presented at the preceding conference [50].1 Our new ingredient is an efficient and general procedure
to generate convergent integrands for integrals which initially have subdivergences. This is achieved
with a BPHZ-like renormalization scheme with one-scale counterterms introduced in [23].

A great advantage of this approach is that it is easily automatized and applicable to all integrals,
contrary to the multitude of tricks and tools for special classes of diagrams combined in the traditional

1Maple is a trademark of Waterloo Maple Inc.
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calculations. This simplifies the computation, reduces the possibilities for errors in the programs
and ensures the reproducibility of our results.2 Also our calculation provides a confirmation of the
5-loop results [39] and the 6-loop field anomalous dimension [7] with very different methods.

2. Field theory and renormalization

The renormalized Lagrangian of the scalar φ 4 model in D = 4−2ε Euclidean dimensions is

L =
1
2

m2Z1φ
2 +

1
2

Z2 (∂φ)2 +
16π2

4!
Z4 g µ

2ε
φ

4, (2.1)

with an arbitrary mass scale µ . The Z-factors relate the renormalized field φ , mass m and coupling
g to the bare field φ0, bare mass m0 and bare coupling g0 via

Zφ =
φ0

φ
=
√

Z2, Zm2 =
m2

0
m2 =

Z1

Z2
and Zg =

g0

µ2εg
=

Z4

Z2
2
. (2.2)

In dimensional regularization [63] and minimal subtraction, the Z-factors depend only on ε and g as

Zi = Zi(g,ε) = 1+
∞∑

k=1

Zi,k(g)
εk (2.3)

and determine the renormalization group functions [33, 62]. We are interested in the beta function

β (g) = µ
∂g
∂ µ

∣∣∣∣
g0

=−2ε

(
∂ log(gZg)

∂g

)−1

=−2εg+2g2 ∂Zg,1(g)
∂g

(2.4)

and the anomalous dimensions for the field and mass, defined by

γi(g) = µ
∂ logZi

∂ µ

∣∣∣∣
g0,m0,φ0

= β (g)
∂ logZi(g)

∂g
=−2g

∂Zi,1(g)
∂g

for i = m2,φ . (2.5)

3. Counterterms from massless propagators

The Z-factors (2.2) arise as the counterterms for the one-particle irreducible correlation func-
tions ΓN of N = 2 and N = 4 fields. In terms of the Bogoliubov-Parasiuk R′-operation [14, 15],
which subtracts UV subdivergences from Feynman integrals, the Z-factors can be expressed as

Z1 = 1+∂m2KMSR′Γ2(p,m2,g,µ),

Z2 = 1+∂p2KMSR′Γ2(p,m2,g,µ) and

Z4 = 1+KMSR′Γ4(p,m2,g,µ)/g.

(3.1)

The operator KMS is the minimal subtraction scheme (MS), meaning the projection

KMS

(∑
n

cnε
n

)
:=
∑
n<0

cnε
n (3.2)

onto the pole part with respect to the dimensional regulator ε = (4−D)/2 and it ensures the form
(2.3) of the Z-factors. Recall that these depend only on g and ε , which allows us to simplify the
calculation tremendously [41, 64, 71]:

2The publication of the Maple and Python programs used for our calculations is under preparation.
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• The action of ∂m2 turns a propagator diagram into a sum of diagrams with a squared propagator,

∂

∂m2
1

k2 +m2 =− 1
k2 +m2

1
k2 +m2

which may be interpreted as a 4-point graph with two additional, vanishing external momenta
entering at a common vertex. This means that Zm2 can be expressed in terms of contributions
to Z4 of a subset of the 4-point diagrams with modified symmetry factors.

• We can set all internal masses to zero in the 2-point diagrams for the computation of Z2, such
that Γ2(p,0,g,µ) is given by p-integrals.

• Also in Γ4 we may set all internal masses to zero. Furthermore, we may set external momenta
to zero until only a propagator (p-integral) with two external legs remains. This is called
infrared rearrangement (IRR) [27, 67], see figure 1.3

These standard techniques express all Z-factors in terms of p-integrals without non-physical infrared
divergences. In the next section, we will explain how these integrals can be computed by parametric
integration, at least to the sixth loop order.

As mentioned in the introduction, we will dispose ofR∗ and IBP completely.

4. Parametric integration

Of the many recent advances made in the evaluation of Feynman integrals, parametric inte-
gration is one of the most powerful methods for p-integrals; surpassed only by the position-space
approach of graphical functions [58] and the combination [34] of both techniques used in [52, 59].

The starting point is the representation of a Feynman integral Φ(G) associated to a Feynman
graph G in terms of variables αe associated to each edge e ∈ E(G) of G (these are called Schwinger-,
Feynman- or α-parameters). Let us write h1(G) for the number of loops of G and

ω(G) =
∑

e∈E(G)

νe−h1(G)
D
2
=
∑

e∈E(G)

νe−2h1(G)+ εh1(G) (4.1)

for the superficial degree of convergence of G given by power counting. The variables νe encode the
exponents to which the momentum space propagators 1/(k2

e +m2
e)

νe are raised. Choose an arbitrary
edge e0 ∈ E(G).4 Then the parametric representation for Φ(G) is

Φ(G) = Γ(ω(G))

 ∏
e∈E(G)

∫
∞

0

ανe−1
e dαe

Γ(νe)

 δ (1−αe0)

U D/2−ω(G)F ω(G)
(4.2)

in terms of the Symanzik polynomials U and F [46, 47]. These can be expressed as

U =
∑

T

∏
e/∈T

αe and F =
∑

C

p2(C)
∏
e∈C

αe +U
∑

e∈E(G)

m2
eαe (4.3)

3One may also introduce new (auxiliary) external momenta and it is possible to apply IRR to 2-point diagrams
themselves, see the discussion in [7]. However, we did not use any of these extensions in our calculation.

4The value of the Feynman integral Φ(G) in (4.3) does not depend on the choice of e0. It can be interpreted as
a projective integral and we can actually replace δ (1−αe0) by δ (1− f (α)) with an arbitrary function f (α) that is
homogeneous of degree one and positive when all αe > 0.

3
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in terms of spanning trees T and cuts C which separate G into 2 components; p(C) is the momentum
flowing through the cut edges C [13]. In our case, all masses me are zero and only a single external
momentum p is flowing through the graph (it has just 2 external legs), such that F (and U ) are
linear in all edge variables αe. For example, the graph

G =

1

2

3 4 gives
U = (α1 +α2)(α3 +α4)+α3α4 and

F = p2
α1(α2α3 +α2α4 +α3α4).

(4.4)

Note that the momentum dependence factors out of the integral by simple power counting:

Φ(G, p2) = p−2ω(G)
Φ(G,1). (4.5)

It was noted in [21] that for many massless propagators, the integrals over αe in (4.2) can be
performed one after the other in terms of multiple polylogarithms if one chooses a good order for
these integrations. Graphs which admit such a good order are called linearly reducible and can be
computed, order by order in ε , with the algorithm described in [11, 21, 22] and implemented in
[10, 49, 51]. In [48] it was found that all massless propagators with ≤ 4 loops are indeed linearly
reducible, and the same method was even applied to some 6-loop p-integrals [49, 50].

The remaining challenge to the straightforward application of parametric integration in the
linearly reducible case is the presence of subdivergences. Note that the ε-expansion needs to be
performed on the integrand in (4.2). Subdivergences imply that the resulting integrals are divergent
and not defined. Therefore we must find integrands which are free of subdivergences.

Sector decomposition [9, 12] is the standard approach to solve this problem and by now very
well established and powerful [16, 60]. However, it is best suited for numerical calculations; the
huge number of sectors that are generated makes it very inefficient for the high loop orders under
consideration here, and also it introduces changes of variables which make the analytic integration
of each sector much more complicated.

These problems can in principle be avoided with the help of IBP relations, because it is always
possible to write a Feynman integral in terms of master integrals without subdivergences [68].
Unfortunately, such IBP reductions are too complicated in our case. Only at this conference, the
first calculations where presented that managed IBP reductions for 5-loop vacuum integrals [44]
and 4-loop p-integrals [54], highlighted by the impressive computation [3] of the 5-loop QCD
β -function (25 years after the φ 4-result). An extension of IBP to the next loop order seems out of
reach with current technologies and some new ideas like [69] are being investigated.

Luckily, it is possible to avoid IBP altogether by the method explained below. Note that this
is feasible only because there are only very few graphs in φ 4 theory (just 627 graphs need to be
computed for Γ4 at six loops). In contrast, scalar φ 3 theory (in six dimensions) has many more
diagrams and was therefore evaluated at mere 4 loops only very recently [36, 53].

5. Subdivergences and one-scale renormalization scheme

The R′-operation subtracts all UV-subdivergences of a given Feynman integral Φ(G) and a
final overall subtraction renders the integral itself finite [37]. The famous forest formula [70]

RΦ(G) = (1−K)R′Φ(G) =
∑

F

(−1)|F | [Φ(G/F)−KΦ(G/F)]
∏
γ∈F

KΦ(γ/F) (5.1)

4
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G = G1-s = or GIR-unsafe
1-s =

Figure 1: A graph and its infrared-safe rearrangements. The rearrangement on the right is not infrared-safe.

expresses the renormalized integral RΦ explicitly as a sum over all forests F (sets of proper
subdivergences which are nested or disjoint).5 The operator K determines the renormalization
scheme and is given by (3.2) for MS. While (5.1) guarantees that all poles in ε cancel in the sum of
the regularized integrals, we do not obtain subdivergence-free integrands this way. The reason is
that prior to the integration of the α-parameters in (4.2), there are no poles in ε and so we clearly
cannot commute the subtraction KMS with the integration Φ. Put differently, by definition of the
MS-scheme, its counterterms depend on the regularization.

This is not the case for schemes like the original BPHZ where the counterterms are defined
by expansion, in the masses and momenta, around a fixed set of values (the renormalization point).
It is well-known that in this case one may perform the subtractions under the integral sign; these
subtracted integrands give convergent integrals even in D = 4 dimensions (ε = 0).

Such schemes are therefore ideal for parametric integration and were studied in this context
in detail in [23]. In particular, the authors suggested a scheme K1-s where all counterterms are
one-scale—in other words, p-integrals. For logarithmically divergent graphs G they set

K1-sΦ(G) :=

{
Φ(G)|p2=1 if G is a p-integral and

Φ(G1-s)|p2=1 if G has more than two external legs,
(5.2)

where G1-s is any infrared-safe rearrangement of G with only two external legs. We already
mentioned this method in section 3 as the crucial simplification in the computation ofR′Γ4: There
is always at least one way to nullify external momenta to obtain a p-integral without introducing
infrared divergences, see figure 1. Crucially, the subtractions (5.1) for K =K1-s may be performed
under the integral sign. We can thus safely expand the subtracted integrand in ε and integrate each
term individually as described in section 4 to obtain the renormalized Feynman integralR1-sΦ(G)

in this scheme. It depends on p2 and vanishes at p2 = 1 by construction. With (4.5), we find

∂p2R1-sΦ(G)
∣∣

p2=1 =−
∑

F

(−1)|F |ω(G/F)K1-sΦ(G/F)
∏
γ∈F

K1-sΦ(γ/F) =−ω(G)K1-sΦ(G)+ . . .

and solve for the unrenormalized Feynman integral in dimensional regularization:

K1-sΦ(G) =−

(
∂p2R1-sΦ(G)

)∣∣
p2=1

ω(G)
−
∑
/06=F

(−1)|F |
ω(G/F)

ω(G)
K1-sΦ(G/F)

∏
γ∈G

K1-sΦ(γ/F). (5.3)

Note how this formula expresses any given p-integral Φ(G) (at p2 = 1) in terms of

• an integralR1-sΦ(G) without subdivergences (directly integrable in α-parameters) and

• products of lower-loop p-integrals which can be computed recursively with the same method.

5Remarkably, this is essentially just a formula for the antipode in the Hopf algebra of Feynman graphs [42].

5
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An example for theR′-operation in this scheme is

R′1-sΦ

( )
= Φ

( )
− Φ

( )∣∣∣∣
p2=1

Φ

( )
− Φ

( )∣∣∣∣
p2=1

Φ

( )
− Φ

( )∣∣∣∣
p2=1

Φ

( )
+2 Φ

( )∣∣∣∣
p2=1

Φ

( )∣∣∣
p2=1

Φ

( ) (5.4)

where the terms in the last line come from the forests F =
{

,
}

and F =
{

,
}

. Note that
∂p2R1-s = ∂p2R′1-s becauseR1-s =R′1-s− R′1-s|p2=1 differ only by a constant. So we can apply ∂p2

to the left hand side and compute this integral parametrically to the desired order in ε , and then use
(5.3) to express the unrenormalized Φ( ) in terms of this quantity and the products of one- and
two-loop integrals on the right hand side of (5.4). In section 6.2 we discuss a simpler example.

For the overall quadratically divergent 2-point integrals contributing to Γ2, the overall subtrac-
tion (5.2) becomes K1-sΦ(G) = Φ(G)|p2=1 +(p2−1)∂p2 Φ(G)|p2=1. We just take one additional
derivative with respect to p2 and compute ∂ 2

p2R1-s = ∂ 2
p2R′1-s in this case, replacing all ω(G) in

(5.3) by −ω(G)(ω(G)+1) and similarly for ω(G/F). Note that we can always factor off quadratic
subdivergences, see section 6.1. Hence our above discussion of the simple subtractions for loga-
rithmic subdivergences (together with at most one additional overall derivative) is sufficient for our
calculation. In principle though, the method can also be applied more generally [23].

6. Remarks on the calculation

As was mentioned in the introduction, we wrote computer programs to fully automate the
entire calculation. The main program is written in Python using the GraphState/Graphine
library, which provide a very convenient way to manipulate Feynman graphs [4, 6]. It generates
the graphs, computes their symmetry factors and combines them into the counterterms (3.1) to
calculate the anomalous dimensions and the beta function via (2.5) and (2.4). In order to evaluate the
corresponding integrals Φ(G), the Python program computes the forest formula (5.1) and chooses
one-scale structures for each graph, implementing the scheme (5.2).

The resulting expressions ofR1-sΦ(G) as linear combinations of products of integrals are passed
on to a Maple script. It computes the parametric representation according to section 6.2, performs
the ε-expansion and calls HyperInt [51] to perform the integration of

(
∂p2R1-sΦ(G)

)∣∣
p2=1.

This is the most time-consuming step. Finally, the Python program reconstructs the value of the
unsubtracted p-integral according to (5.3).

A detailed discussion and publication of these programs is under preparation.

6.1 Factorization

Due to the trivial momentum dependence (4.5) of p-integrals, every 2-point subgraph γ can be
integrated out separately if one replaces it with a propagator of index νe = ω(γ). For example,

Φ

 = Φ

( )2
∣∣∣∣

p2=1
·Φ
(

ε

)∣∣∣∣
p2=1
·Φ

(
ε

3ε
)

6
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Therefore, we only need to compute p-integrals for 2-connected graphs (graphs which do not have
any p-integral as a subgraph). In particular this means that all quadratic propagator subdivergences
factor out and we only have to deal with logarithmic subdivergences, where the simple subtractions
(5.2) suffice.

Note that this factorization procedure introduces ε-dependent propagator exponents νe. With
traditional methods it was very difficult to compute such integrals. For parametric integration, the
effect of such exponents is just that the ε-expansion of the integrand in (4.2) also includes logarithms
log(αe) of individual Schwinger parameters, in addition to log(U ) and log(F ). This causes no
problem for the integration algorithms. For example, comprehensive results for arbitrary νe in the
case of 4-loop p-integrals were computed this way in [48].

6.2 Parametric representation for products

The forest formula (5.1) forR1-sΦ(G) contains products of Feynman integrals. Note that the
graph polynomials as defined in (4.3) vanish for products (disjoint unions) of graphs. Instead, for
the parametric integral representation for a product G =

∏n
i=1 Gi one has to set [23]

UG =

n∏
i=1

UGi and FG =

n∑
i=1

FGi

∏
j 6=i

UG j such that
FG

UG
=

n∑
i=1

FGi

UGi

. (6.1)

In order to ensure the cancellation of all subdivergences in the parametric integral representation for
R1-sΦ(G), it is crucial that one tracks correctly the individual edges of the sub- and quotient graphs
in (5.1). This is illustrated in the following example of a single logarithmic UV-subdivergence from
(4.4), where we explicitly show the edge labels:

R′1-sΦ

(
1

2

3 4

)
= Φ

(
1

2

3 4

)
− Φ

(
3 4

)∣∣∣∣∣
p2=1

Φ

(
1

2

)
. (6.2)

The graph polynomials (4.3) for the graph G =
1

2

3 4 were given in (4.4) and the prescription (6.1)
for the product of the subgraph γ = 3 4 at p2 = 1 and the quotient G/γ =

1

2

yields

Uγ·G/γ = (α1 +α2)(α3 +α4) and Fγ·G/γ = α3α4(α1 +α2)+ p2
α1α2(α3 +α4). (6.3)

The parametric representation (4.2) for ∂p2R1-sΦ(G)
∣∣

p2=1 in this case is

Γ(2ε)

∫
∞

0
dα1 · · ·

∫
∞

0
dα4δ (1−αe0)

[
−2ε

U 2−3ε

G F 2ε
G

− −εα1α2(α3 +α4)

U 2−2ε

γ·G/γ
F 1+ε

γ·G/γ

]
p2=1

(6.4)

which is finite at ε → 0 and may be integrated order by order in ε . Many more examples are
discussed in [23].

6.3 Simplification at leading order

For the leading order in ε , we evaluate the parametric integrand in (4.2) at ε = 0. If a graph
G is logarithmically divergent, that is ω(G)|

ε=0 = 0, this means that F drops out completely and
only the polynomial U plays a role for the integration. It determines the pole in ε coming from

7
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the Γ(ω)-prefactor; higher orders in ε are not needed for the determination of the Z-factors. This
simplifies the parametric integration considerably. Since U is linear in all αe, the first integration
is elementary and the result can be interpreted as the p-integral G\ e (with the external momenta
entering at the vertices that were incident to e) [21, 48].6

All 4-point 6-loop graphs contributing to Γ4 are therefore effectively expressed in terms of
5-loop p-integrals. In the traditional approach, this simplification is achieved with theR∗-operation
[24, 26, 30, 32].

6.4 Linear reducibility

Not all 6-loop p-integrals are linearly reducible, but as explained we are essentially only
computing 5-loop p-integrals. It turns out that indeed all integrals needed for the 6-loop calculation
of the Z-factors are linearly reducible, with just a single exception. This is the primitive graph

Φ

 =
288
30ε

(
58ζ8−45ζ3ζ5−24ζ3,5

)
+O

(
ε

0) , (6.5)

P6,4 in the notation of [57]. It has been known numerically since [17] and in [20] it was identified in
terms of Riemann zeta values ζk =

∑
∞

n=1 1/nk and the double zeta value

ζ3,5 :=
∑

1≤n<m

1
n3m5 ≈ 0.037707673. (6.6)

It is conjectured that ζ3,5 cannot be expressed as a rational linear combination of products of
Riemann zeta values. An analytic calculation confirming the result (6.5) was first provided in [56]
and recently with the beautifully elegant method of graphical functions [58]. While P6,4 is not
linearly reducible in the strict sense and thus not computable with HyperInt, this is in fact only
a limitation of this implementation which could be lifted: It is known how P6,4 can be integrated
parametrically by splitting the integrand as described in [21].

7. Results and checks

The beta function of φ 4-theory in the MS scheme in D = 4−2ε dimensions to order g7 is

β
MS(g) =−2εg+3g2− 17

3 g3 +
(
12ζ3 +

145
8

)
g4−

(
120ζ5−18ζ4 +78ζ3 +

3499
48

)
g5

+
(
1323ζ7 +45ζ

2
3 − 675

2 ζ6 +987ζ5− 1189
8 ζ4 +

7965
16 ζ3 +

764621
2304

)
g6

−
( 46112

3 ζ9 +768ζ
3
3 + 51984

25 ζ3,5− 264543
25 ζ8 +4704ζ3ζ5 +

63627
5 ζ7−162ζ3ζ4

+8678
5 ζ

2
3 − 6691

2 ζ6 +
63723

10 ζ5− 16989
16 ζ4 +

779603
240 ζ3 +

18841427
11520

)
g7 +O

(
g8)

≈−2εg+3g2−5.667g3 +32.55g4−271.6g5 +2849g6−34776g7 +O
(
g8) .

(7.1)

For the anomalous dimension of the mass to order g6 we find

γ
MS
m2 (g) =−g+ 5

6 g2− 7
2 g3 +

(
3ζ4 +

3
2 ζ3 +

477
32

)
g4−

(75
2 ζ6−9ζ

2
3 +ζ5 +

65
4 ζ4 +

1519
48 ζ3 +

158849
2304

)
g5

+
( 55701

100 ζ8−288ζ3ζ5− 972
25 ζ3,5 +54ζ3ζ4− 4629

20 ζ7

+446
5 ζ

2
3 + 1141

4 ζ6 +
4019

40 ζ5 +
1695

32 ζ4 +
472891

1440 ζ3 +
7915913

23040

)
g6 +O

(
g7) (7.2)

≈−g+0.8333g2−3.5g3 +19.96g4−150.8g5 +1355g6 +O
(
g7) .

6These relations between different p-integrals and vacuum integrals are also known as cut-and-glue [2].
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Let us summarize various checks of our result. First note that we computed the renormalization
group functions for the O(N)-symmetric φ 4 model with their full N-dependence (shown above
for N = 1). Our result agrees with the known 5-loop results [25, 29, 38, 39] and the 6-loop field
anomalous dimension [7]. It also confirms the leading and subleading terms in the large N expansion
of the 6-loop beta function obtained almost 20 years ago in [19, 35].

Additional checks were provided by Dmitrii Batkovich, who calculated 575 out of the 627
six-loop Γ4-counterterms using the traditional approach, which combines IBP for four-loop massless
propagators (known from [2, 43, 61]) and IRR with R∗ to compute the diagrams [5]. The most
complicated diagrams (that could not be checked this way) were additionally computed numerically
with sector decomposition [9], using a custom-made program by the first author, to at least 3
significant digits.

Also note that in our first calculation, we resolved subdivergences in a different way than
presented in section 5, namely by constructing primitive (i.e. subdivergence-free) linear combinations
of graphs like in [48, 49]. This technique will be explained in detail elsewhere. The results obtained
by both methods agree.

Probably the strongest check comes from the completely independent computation of the 6-loop
renormalization group functions of φ 4 theory (N = 1) by Oliver Schnetz [59]. His computation is
very different both conceptually and technically; being carried out in position space with graphical
functions [58] and exploiting the powerful theory of generalized single-valued hyperlogarithms [55].

8. Outlook

While the primitive 6-loop graphs had been computed already thirty years ago [17], subdiver-
gences have hitherto been the obstacle for calculations in φ 4 theory. In this article, we showed
how recently developed techniques (parametric integration and the one-scale BPHZ scheme) can
overcome the limitations of traditional methods. Our approach can in principle also be used at
7 loops, but the calculation using graphical functions promises to be much more efficient and is
already underway [59]. The contributions from 7-loop graphs without subdivergences (these are
expected to give the most complicated transcendental numbers) have been completed already [52].

An obvious question is to which extent the techniques presented here will be of use in other
theories, like φ 3 in six dimensions (only known to four loops [36]) and gauge theories like QCD
(known to five loops [3]). One problem is the much higher number of graphs at a given loop order.
A further complication might arise from the integrals themselves, because cubic graphs have more
edges per loop order than graphs of φ 4. This means that the integrations will be more demanding.

We also hope that graph-theoretic methods of desingularization, for example the BPHZ-derived
approach we described here, might be useful in more general situations when the method [68] via
IBP is not an option.
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