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1. Introduction

In the LHC Run-II era, higher accuracy of theoretical predictions is needed more than ever.
One-loop next-to-leading order (NLO) calculations have been established in the last decade as the
new standard, even for very high-multiplicity processes, and they have achieved a high degree of
automation, see e.g. [1, 2, 3, 4]. Two-loop next-to-next-to-leading order (NNLO) computations are
the current frontier: while a plethora of two-to-two processes, with both colourless and colourful
final states, have recently been computed, computations for two-to-three processes at the same
accuracy still face major bottle-necks. Here we focus on the computation of the two-loop Feynman
integrals which enter the purely virtual contribution of five-point massless cross sections at NNLO.
While at one-loop all Feynman diagrams can be decomposed into a small sets of master integrals
which are all known [5], at two-loop much larger set of master integrals appear, many of which
remain to be calculated. We present here the calculation of the planar five-point Feynman integrals
in the massless case [6, 7].

2. Computation of the Feynman integrals

Although it is possible to evaluate such integrals numerically through the sector decomposition
approach [8, 9], these implementations tend not to be fast enough for the evaluation of the large
number of points needed in a numerical simulation. For this and other reasons a fully analytic
computation is needed.

In order to compute the required master integrals, we generate a system of first-order differ-
ential equations for these integrals by computing their derivatives with respect to external kine-
matic invariants [10] and by then reducing the resulting expressions to master integrals through
integration-by-part identities [13, 14, 15, 16], a strategy which had been first applied to the case of
four-point integrals with one external leg off-shell [11] needed in the γ∗→3 jet amplitude [12].

We define the massless five-point Feynman integral as

Ga1 ,... ,a11 =
∫ dDk1 dDk2

(iπD/2)2

[
−(k1 + p1 + p2 + p3 + p4)

2
]−a9[

−k2
1

]a1 [−(k1 + p1)2]a2 [−(k1 + p1 + p2)2]a3 [−(k1 + p1 + p2 + p3)2]a4[
−(k2 + p1)

2
]−a10

[
−(k2 + p1 + p2)

2
]−a11[

−k2
2

]a5 [−(k2 + p1 + p2 + p3)2]a6 [−(k2 + p1 + p2 + p3 + p4)2]a7 [−(k1− k2)2]a8
(2.1)

with the five four-momenta on-shell, p2
i = 0 , i = 1, . . . , 5, and all outgoing. We define the kine-

matic invatiants vi = 2pi · pi+1.
We find 61 master integrals, 17 of which correspond to genuine five-point topologies (of these

only ten are independent, as the remaining seven can be obtained by cyclically permuting the
external momenta). In parallel to our work, also another group has computed the five-point two-
loop planar Feynman integrals, see [17].

As the basis of master integrals is not unique, it is possible to make choices which considerably
simplify the differential equation. In particular, it was noted in [18] that it is possible to chose a
basis of master integrals in such a way that the dimensional regulator ε is factored out, i.e.

∂vi~g = Ai(~v,ε)~g −→ ∂vi
~f = ε Ãi(~v)~f , (2.2)

1



P
o
S
(
L
L
2
0
1
6
)
0
5
1

Two-loop five-point integrals in massless QCD Nicola Adriano Lo Presti

which can be easily integrated order by order in ε .
The differential equation can be then further simplified and rewritten as

d~f (~v,ε) = ε d

[
∑
k

ak log αk (~v)

]
~f (~v,ε) (2.3)

where ak are constant matrices. The alphabet is

~α =
{

v1 , v2 , v3 , v4 , v5 , (2.4)

v1− v4 , v2− v5 , v3− v1 , v4− v2 , v5− v3 ,

v1 + v2− v4 , v2 + v3− v5 , v3 + v4− v1 , v4 + v5− v2 , v5 + v1− v3 ,

v3 + v4 , v4 + v5 , v5 + v1 , v1 + v2 , v2 + v3 ,

r1 , r2 , r3 , r4 , r5 , ∆

}
with ri = (ai+

√
∆)/(ai−

√
∆) , ai = Cyclici (v1 v2 − v2 v3 + v3 v4 − v1 v5 − v4 v5 ) , where ’Cyclici’

increases all indices of the argument of i, and ∆ =
∣∣2pi · p j | (i, j = 1, . . . ,5).

The boundary values of the integrals are determined by requiring the cancellation of spuri-
ous singularities appearing in the differential equations, as it was done, for example, in [19]. An
example is that, although no singularities appear in the Euclidean region vi < 0, the differential
equation contains the letter v1 + v2− v4 which lead to spurious singularities when v4 = v1 + v2.
The requirement that, once the solution is plugged into the differential equation, these divergencies
must cancel, allows us to constraint the value of the solution in these points, which then can be
transported to a chosen reference point by solving the differential equation. In particular we also
use the conditions imposed by the cancellation of spurious divergencies appearing on the ∆ = 0
hypersurface. As a boundary point of reference we chose the symmetric point

vi = −1 , i = 1, . . . , 5 . (2.5)

An important consequence of eq. (2.2) is that the transcendental weight of the result, which
is defined as the number of iterated integrations, is uniform at each order in ε . For the finite (i.e.
ε0) contribution to cross sections at two-loop accuracy, integration up to weight four is required. A
very compact representation of the result can be obtained by direct integration of eq. (2.3) order by
order in ε , leading to compact expressions in terms of the Chen-Iterated integrals [20, 21].

3. Results represented in terms of Goncharov polylogarithms

Although a representation of the result in terms of Chen iterated integrals leads to very compact
expressions and is well suited to algebraic manipulation, it is not ideal for its efficient numerical
evaluation, for which a representation in terms of multiple polylogarithms [22] is better suited. By
rewriting eq. (2.3) in such a way that only simple poles appear in the right-hand side, i.e.

∂xi
~f = ε ∑

k

ãi,k

xi − xi,k
~f , (3.1)
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Figure 1: Genuine five-point planar two-loop topologies

the solution of the differential equation can be expressed in terms of Goncharov polylogarithms
[23]

G(a1,a2, . . . ,an ; x) =
∫ x

0

dt
t−a1

G(a2, . . . ,an ; t ) ,

(3.2)

with G(x) = 1 , G(0) = 0 and G(~0n ; x) =
1
n!

logn x .

for which efficient numerical implementations exist [24]. This is achieved by parametrizing the
kinematics using momemtum-twistor variables [25]; in particular we use

v1 → x1 ,

v2 → x1 x2 x4 ,

v3 → x1
x3 (x4−1)+ x2 x4 + x2 x3 (x4− x5)

x2
, (3.3)

v4 → x1 x2 (x4− x5),

v5 → x1 x3 (1− x5)

The inverse of this transformation is two-valued. We chose the inversion for which the symmetric
point in eq. (2.5) is given by

x1 = −1 , x2 =
1+
√

5
2

, x3 = 1 , x4 =
−1+

√
5

2
, x5 = 0 . (3.4)

This parametrization has the advantage of making the Gram determinant a perfect square, leading
to

√
∆ = −x2

1

[
x2x4(x5−1)+ x3

(
1+ x2x5 + x4(−2− x2 + x5)

)]
(3.5)

(the overall sign is chosen in such a way that
√

∆ is positive in the symmetric point (3.4)).
The differential equations are then integrated for all 61 master integrals one variable at a time.

In principle, even if the result does not contain square roots originating from the Gram determi-
nant, additional square roots may arise from partial fractioning quadratic denominators to obtain
eq. (3.1). This puts some constraint on the ordering of the integration variables. Choosing x2 as the
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first variable to be integrated leads only to square roots of numbers, which are no problem, since all
other variables are kept fixed. Also, it is convenient to integrate x1 last, since the differential equa-
tion matrix with respect to this variable has the particularly simple form diag(−2/x1 , . . . ,−2/x1) .
The integration path is chosen as a polygonal chain formed by segments which are parallel to the
xi axes, in the order

{
x2,x5,x3,x4,x1

}
.

The four-point sub-topologies have been compared numerically with the results of [11] up
to weight 4, finding perfect agreement. All integrals have been validated against values obtained
through numerical integration [9] in the Euclidean region vi < 0 , i = 1, . . . ,5.

4. Result for the five-gluon all-plus amplitude

The reduction of two-loop scattering amplitudes to a set of master integrals is still an out-
standing problem. For five-point massless QCD amplitudes, the reduction to a basis of integrals
was achieved in the case of external legs having all helicities positive [26, 27]. The integrals we
have computed allowed us to obtain the fully analytic expression of this amplitude in the leading-
colour approximation

A5(1+2+3+4+5+)|leading color = g3
∑
L≥1

(
g2NcΓ

)L

× ∑
σ∈S5/Z5

tr(T aσ(1)T aσ(2)T aσ(3)T aσ(4)T aσ(5))

×A(L)
5 (σ(1)+σ(2)+σ(3)+σ(4)+σ(5)+) , (4.1)

where S5/Z5 denote all non-cyclic permutations of five points. This amplitude vanishes at tree-level
and is therefore finite at one loop,

A(1)
5 = R F(1)

5 +O(ε) , (4.2)

with R = i/6/(〈12〉〈23〉〈34〉〈45〉〈51〉) and [28]

F(1)
5 = v1v2 + v2v3 + v3v4 + v4v5 + v5v1 + tr5 . (4.3)

At two loops, the infrared and ultraviolet divergent terms can be predicted in terms of the one-loop
result [29]

A(2)
5 = A(1)

5

[
−

5

∑
i=1

1
ε2

(
µ2

−vi

)ε
]
+R F(2)

5 +O(ε) , (4.4)

In order to define the finite reminder F(2)
5 , the one-loop amplitude A(1)

5 in the previous equation
needs to be expanded up to order ε2. This involves the computation of the one-loop massless
pentagon integral up to that order in ε , which we obtained using the same method that we have
used for the determination of the two-loop integrals. The fact that the double and single poles in
ε of eq. (4.4) are correctly reproduced provides an additional non-trivial check of the correctness
of our results up to weight three. In the finite remainder, all functions of weight one, three and
four cancel out and we can express the remaining weight-two functions in terms of dilogarithms,
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finding the following expression [6],

F(2)
5 =

5π2

12
F(1)

5 +
4

∑
i=0

σ
i

v5tr
[
(1− γ5)/p4/p5/p1/p2

]
(v2 + v3− v5)

I23,5

+
1
6

tr
[
(1+ γ5)/p4/p5/p1/p2

]2

v1v4
+

10
3

v1v2 +
2
3

v1v3

 . (4.5)

where σ i cyclically shifts all indices (of p, v, and I) by i, and where

I23,5 = ζ2 +Li2

[
(v5− v2)(v5− v3)

v2v3

]
−Li2

[
v5− v3

v2

]
−Li2

[
v5− v2

v3

]
. (4.6)

Note that eq. (4.5) contains both parity odd and even terms. We have checked our result via direct
numerical comparison with [26]. We have also checked eq. (4.5) in the limit of two external legs
being collinear, where the amplitude is expected to factorize as the sum of products of splitting
amplitudes [30] and lower-point amplitudes [31]. Eq. (4.5) was also confirmed independently in
[32] following a completely different approach based on generalized unitarity.

5. Conclusions

In these proceedings we have presented our recent calculation of the full set of two-loop planar
master integrals entering massless five-point QCD amplitudes [7] using the method of differential
equations [10, 18]. Our result provides the complete set of functions which can appear in a generic
planar massless five-particle scattering amplitude at two loops, reducing the calculation of any
such scattering amplitude to the determination of the algebraic coefficients, see e.g. [26, 35],
accompanying the integral basis.

We have applied the integrals that we have computed to the two-loop five-gluon amplitude
with all helicities positive in the leading-colour approximation, obtaining a very compact analytic
result [6]. Given the compactness of the analytic result for the all-plus amplitude, this result will
also give useful hints for generalizations for any number of external legs, see recent revelopments
in [34, 33].

An important next step will be the computation of the master integrals corresponding to non-
planar topologies, which, for instance, are required for the full-colour all-plus amplitude [27].
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