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We summarize recent work on the application of the string-inspired worldline formalism to the
derivation of gauge-invariant form factor decompositions of the QCD off-shell N-gluon ampli-
tudes. This formalism allows one to achieve such decompositions by way of integration-by-parts,
rather than the usual tedious analysis of the non-abelian off-shell Ward identities, and to com-
bine the scalar, spinor and gluon loop cases. For the three-gluon case, we rederive the standard
Ball-Chiu decomposition in an efficient way. For the four-gluon vertex, we obtain a new decom-
position in terms of 19 tensors, of which only 14 have full four-point kinematics; the remaining
five are the Ball-Chiu tensors reappearing as boundary terms. A particularly compact representa-
tion is obtained for the case of N = 4 SYM theory. We compare with the low-energy effective
action.
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1. The QCD N-gluon vertices

Recent years have witnessed tremendous progress in the calculation of on-shell matrix ele-
ments in quantum field theory, as exemplified by many talks at this conference (see [1, 2] for recent
reviews). For off-shell amplitudes, however, progress has been much slower. Off-shell information
is necessary, e. g., for the full exploitation of the renormalization group, the study of the infrared
properties of QCD [3], as well as for the matching of perturbative information with lattice data
(see, e.g., [4]). Having explicit results for off-shell amplitudes, or at least well-organized integral
representations for them, can also be highly useful for the construction of higher-loop amplitudes.
Off-shell amplitudes generally depend on a large numbers of Lorentz invariants, so that, beyond
the simplest cases, usually there is little hope for an explicit closed-form evaluation. The challenge
is then rather to obtain integral representations that are suitable to numerical evaluation, and well-
adapted to the symmetries of the amplitude. In QCD, an important part of this task is to find a
tensor decomposition in the polarization indices that harmonizes with the off-shell Ward identities.

Here, we will describe a formalism that allows one to obtain such “form factor decomposi-
tions” for the QCD N - gluon amplitudes with an arbitrary number of gluons, starting from the
“worldline path integral representation” of these amplitudes at the one-loop level. Thus in terms
of standard field theory, we deal with the Feynman diagrams shown in Fig. 1 (here we show the
spinor loop case).

Figure 1: Diagram contributing to the N-gluon amplitudes.

We denote the one-loop off-shell one-particle irreducible (‘1PI’) N-gluon function or “vertex”
by Γ

a1a2···aN
s µ1...µN [k1, . . . ,kN ], with s = 0, 1

2 ,1 for the scalar, spinor, and gluon loop. Off-shell, the Ward
identities for the gluon amplitudes are inhomogeneous, and map N - point to N−1 - point:

kµ1
1 Γ

a1a2···aN
s µ1...µN

[k1, . . . ,kN ] = −ig fa1a2cΓ
ca3a4···aN
s µ2...µN

[k1 + k2,k3, · · · ,kN ]

−ig fa1a3cΓ
a2ca4···aN
s µ2...µN

[k1,k2 + k3, · · · ,kN ]− . . . .

(+possibleghost terms) . (1.1)

These identities hold for the scalar and spinor loop cases unambiguously and without ghost terms.
For the gluon loop their precise form depends on the choice of the gauge-fixing: for a generic
gauge-fixing ghost terms will appear on the right-hand side. However, the method presented here
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is based on a path integral representation of the gluon loop amplitudes using the background field
method with quantum Feynman gauge [5, 6], which guarantees the absence of such terms [7]
(alternatively, the same ‘gauge-invariant vertices’ can be obtained through the pinch-technique
[8, 9]).

2. The Ball-Chiu decomposition of the three-gluon vertex

For the three-gluon vertex, the following form factor decomposition was obtained by Ball and
Chiu in 1980 [10, 11] through an explicit analysis of the Ward identity:

Γµ1µ2µ3(k1,k2,k3) = f abc
{

ATA +BTB +CTC +FTF +HTH +STS + cyclic perm.
}
, (2.1)

where

TA = gµ1µ2(k1− k2)µ3 ,

TB = gµ1µ2(k1 + k2)µ3 ,

TC = −[(k1k2)gµ1µ2− k1µ2k2µ1 ](k1− k2)µ3 ,

TF = [(k1k2)gµ1µ2− k1µ2k2µ1 ][k1µ3(k2k3)− k2µ3(k1k3)] ,

TH = −gµ1µ2 [k1µ3(k2k3)− k2µ3(k1k3)]+
1
3
(k1µ3k2µ1k3µ2− k1µ2k2µ3k3µ1) ,

TS =
1
3
(k1µ3k2µ1k3µ2 + k1µ2k2µ3k3µ1) . (2.2)

It involves six universal tensor structures TA,TB,TC,TF ,TH ,TS with scalar coefficient functions
A,B,C,F,H,S. TA is just the tree-level vertex, thus at tree-level one has A = 1 with the other
coefficient functions vanishing. S turns out to vanish at one-loop [11] and presumably to all orders
in perturbation theory [12]. Of the remaining ones, F and H possess true three-point kinematics,
and are transversal, while A,B,C have (pinched) two-point kinematics, and have a longitudinal part.

3. The Bern-Kosower formalism

A new perspective on the QCD gluon amplitudes is provided by string theory, where they
appear as the infinite-string tension limit of certain string amplitudes. Along these lines, Bern
and Kosower in the early nineties obtained the following “Bern-Kosower master formula” for the
one-loop N - gluon amplitudes [13, 14]:

Γ
a1...aN [k1,ε1; . . . ;kN ,εN ] = (−ig)N tr(T a1 . . .T aN )

∫
∞

0
dT (4πT )−D/2e−m2T

×
∫ T

0
dτ1

∫
τ1

0
dτ2 . . .

∫
τN−2

0
dτN−1 exp

{
N

∑
i, j=1

[
1
2

GBi jki · k j− iĠBi jεi · k j +
1
2

G̈Bi jεi · ε j

]}∣∣∣∣∣
lin(ε1...εN)

.

(3.1)
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As it stands, this is a parameter integral representation for the (color-ordered) N - gluon vertex,
with momenta ki and polarizations εi, induced by a scalar loop, in D dimensions. Here m and T
are the loop mass and proper-time, τi the location of the ith gluon along the loop, and

GBi j = |τi− τ j|−
(τi− τ j)

2

T
, ĠB(τi,τ j) = sign(τi− τ j)−2

(τi− τ j)

T
, G̈B(τi,τ j) = 2δ (τi− τ j)−

2
T
.

(3.2)
In the Bern-Kosower formalism, this formula is a generating functional for the on-shell N - gluon
amplitudes for the scalar, spinor and gluon loop, via the application of the “Bern-Kosower rules”:

1. For fixed N, expand the generating exponential, keeping only the terms that are linear in
each polarization vector.

2. Use suitable integrations-by-parts (‘IBP’) to remove all second derivatives G̈Bi j .

3. Apply two types of pattern-matching rules :

• The “tree replacement rules”, which generate the contributions of the missing reducible
diagrams.

• The “loop replacement rules”, which generate the integrands for the spinor and gluon
loop from the one for the scalar loop.

4. Strassler’s worldline path integral approach

Following the work of Bern and Kosower, Strassler [5] rederived the master formula and the
loop replacement rules using worldline path integral representations of the gluonic effective actions
Γ[A]. E.g. for the scalar loop [15, 5, 16]

Γ[A] = tr
∫

∞

0

dT
T

e−m2T
∫

Dx(τ)Pe
−
∫ T

0 dτ

(
1
4 ẋ2+igẋ·A(x(τ))

)
, (4.1)

where Aµ = Aa
µT a and P denotes path ordering. This rederivation made it also clear that the

master formula and the loop replacement rules hold off-shell. However, reducible contributions
have to be calculated separately in this approach.

In [17], Strassler then proceeded to a systematic study of the effect of the IBP procedure, and
noted that it leads to the automatic appearance of gluon field strength tensors: namely, in the bulk
it rearranges polarization vectors into the “abelian” part of the field strength tensor for gluon i,

f µν

i ≡ kµ

i ε
ν
i − ε

µ

i kν
i , (4.2)

and it also induces color commutators [T ai ,T a j ] as boundary terms. Those fit together to produce
full nonabelian field strength tensors

Fµν ≡ Fa
µνT a = (∂µAa

ν −∂νAa
µ)T

a + ig[Ab
µT b,Ac

νT c] (4.3)

in the low-energy effective action. Thus we see the emergence of gauge invariant tensor structures
at the integrand level. This observation suggests that the worldline approach may be suitable for
deriving well-organized form factor decompositions for gluonic amplitudes without the usual te-
dious analysis of the Ward identities, and we have found in a recent series of papers [12, 18, 19]
that this is indeed the case.
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5. Ball-Chiu from the master formula

For starters, let us show how to rederive the Ball-Chiu decomposition (2.1), (2.2) from the
Bern-Kosower master formula (3.1) [12]. For N = 3, the master formula yields

Γ
a1a2a3
0 [k1,ε1;k2,ε2;k3,ε3] = (−ig)3tr(T a1T a2T a3)

∫
∞

0
dT (4πT )−D/2e−m2T

×
∫ T

0
dτ1

∫
τ1

0
dτ2 (−i)3P3 e(GB12k1·k2+GB13k1·k3+G23k2·k3) , (5.1)

P3 = ĠB1iε1 · kiĠB2 jε2 · k jĠB3kε3 · kk− G̈B12ε1 · ε2ĠB3kε3 · kk− G̈B13ε1 · ε3ĠB2 jε2 · k j

−G̈B23ε2 · ε3ĠB1iε1 · ki (5.2)

(repeated indices i, j,k, . . . are to be summed). To remove the term involving G̈B12ĠB31, add

− ∂

∂τ2

(
ĠB12ε1 · ε2ĠB31ε3 · k1e(GB12k1·k2+GB13k1·k3+G23k2·k3)

)
. (5.3)

In the abelian case this total derivative term would integrate to zero, but here due to the color
ordering it produces (one half of) the term

tr(T a1 [T a2 ,T a3 ])ε3 · f1 · ε2ĠB12ĠB21 eGB12k1·(k2+k3) . (5.4)

It involves only a two-point integral, with “pinched” momenta k2 + k3. At this stage we have

Γ0 =
g3

(4π)
D
2

tr(T a1 [T a2 ,T a3 ])(Γbulk
0 +Γ

bound
0 ) , (5.5)

Γ
bulk
0 = −

∫
∞

0

dT

T
D
2

e−m2T
∫ T

0
dτ1

∫
τ1

0
dτ2 (Q3

3 +Q3
3)exp

{ 3

∑
i, j=1

1
2

GBi jki · k j

}
,

Γ
bound
0 = −

∫
∞

0

dT

T
D
2

e−m2T
∫ T

0
dτ1ĠB12ĠB21

(
ε3 · f1 · ε2 eGB12k1·(k2+k3)+ cycl.

)
,

(5.6)

Q3
3 = ĠB12ĠB23ĠB31tr( f1 f2 f3), Q2

3 =
1
2

ĠB12ĠB21tr( f1 f2)ĠB3iε3 · ki +2 perm. (5.7)

This is not yet Ball-Chiu: Q3
3 corresponds to the form factor H, but Q2

3 not to F ; it is not even
transversal. We can make Q2

3 transversal by adding another total derivative term:

−r3 · ε3

r3 · k3

1
2

tr( f1 f2)
∂

∂τ3

(
ĠB12ĠB21e(·)

)
+2 perm. (5.8)

Here ri is a reference momentum such that ri · ki 6= 0. This transforms Q2
3 into

S2
3 := ĠB12ĠB21

1
2

tr( f1 f2)ĠB3k
r3 · f3 · kk

r3 · k3
+2 perm. (5.9)
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which is transversal. With the cyclic choice of reference vectors r1 = k2− k3 etc. S2
3 becomes the

Ball-Chiu form factor F indeed. The boundary terms match with the form factors A,B,C. So far
this was all for the scalar loop, but the transition to the spinor and gluon loop cases can be done
simply by the loop replacement rules. For the three–point case, those are [5, 16]:

Scalar→ Spinor:

ĠBi jĠB ji→ ĠBi jĠB ji−GFi jGF ji, ĠB12ĠB23ĠB31→ ĠB12ĠB23ĠB31−GF12GF23GF31 . (5.10)

Scalar→ Gluon:

ĠBi jĠB ji→ ĠBi jĠB ji−4GFi jGF ji, ĠB12ĠB23ĠB31→ ĠB12ĠB23ĠB31−4GF12GF23GF31 . (5.11)

Here GFi j = sign(τi− τ j) .

6. Generalization to the N-gluon case

For the general N - gluon case, the IBP procedure becomes highly ambiguous [20]. Neverthe-
less, a systematic investigation [18] showed that there exist two algorithms that are, in some sense,
preferred: The first algorithm, leading to the “Q - representation”, uses only local total derivative
terms, and makes the relation between the gluon amplitudes and the effective action particularly
transparent; the second algorithm, leading to the ‘S - representation’, uses both local and non-local
total derivative terms and is “Ball-Chiu like” in that all bulk terms become manifestly transversal.

7. The four-gluon vertex

The application of this formalism to the four-gluon case has been completed only recently
[19]. Although for an off-shell gauge boson amplitude one can a priori construct 138 tensors, it
turns out that, up to permutations, the string-inspired formalism leads to a decomposition in terms
of only 19 tensors. Moreover, of those only 14 have full four-point kinematics; the remaining five
come from boundary terms, and those involve pinched momenta. In the S - representation, they are
precisely the Ball-Chiu form factors A,B,C,F,H reappearing with pinched momenta as boundary
terms. Here, we will list only the 14 “true” four-point tensors:

T 4
P = tr( f1 f2 f3 f4), T 4

NP = tr( f1 f3 f2 f4) ,

T 22
P =

1
4

tr( f1 f2)tr( f3 f4), T 22
NP =

1
4

tr( f1 f3)tr( f2 f4) ,

T 3
P = tr( f1 f2 f3)

r4 f4k1

r4k4
, T 3

NP = T 3
P (k1→ k2),

T 2ad j
quart =

1
2

tr( f1 f2)
r3 f3k1

r3k3

r4 f4k1

r4k4
, T 2opp

quart =
1
2

tr( f1 f3)
r2 f2k1

r2k2

r4 f4k1

r4k4
,

T 2ad j
P =

1
2

tr( f1 f2)
r3 f3k2

r3k3

r4 f4k1

r4k4
, T 2ad j

NP =
1
2

tr( f1 f2)
r3 f3k1

r3k3

r4 f4k2

r4k4
,

T 2ad j
C =

1
2

tr( f1 f2)
r3 f3k4r4 f4k1 +

1
2 r3 f3 f4r4 k4k1

r3k3 r4k4
, T 2ad j

Z = T 2ad j
C (k1→ k2) ,

T 2opp
P =

1
2

tr( f1 f3)
r2 f2k3

r2k2

r4 f4k1

r4k4
, T 2opp

NP =
1
2

tr( f1 f3)
r2 f2k4r4 f4k1 +

1
2 r2 f2 f4r4 k4k1

r2k2 r4k4
.

(7.1)
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8. Comparison with the effective action

The low energy expansion of the one-loop QCD effective action induced by a loop particle of
mass m can be expanded as

Γ[F ] =
∫

∞

0

dT
T

e−m2T

(4πT )D/2 tr
∫

dx0

∞

∑
n=2

(−T )n

n!
On[F ] , (8.1)

where On(F) is a Lorentz and gauge invariant expression of mass dimension 2n. To lowest orders
and for the scalar loop, one has [21, 22]

O2 = −1
6

g2FµνFµν ,

O3 = − 2
15

ig3 Fκλ Fλ µFµκ −
1
20

g2Dλ FµνDλ Fµν ,

O4 = +
2
35

g4Fκλ FλκFµνFνµ +
4
35

g4Fκλ Fλ µFκνFνµ −
1
21

g4Fκλ Fλ µFµνFνκ −
8

105
ig3Fκλ Dλ FµνDκFνµ

− 6
35

ig3Fκλ DµFλνDµFνκ +
11
420

g4Fκλ FµνFλκFνµ +
1
70

g2DκDλ FµνDλ DκFνµ . (8.2)

As a check, we have matched the low-energy limit of our results for the three and four-gluon
amplitudes against this effective action, and found complete agreement [19].

9. The case of N = 4 SYM

In the maximally supersymmetric N = 4 SYM theory the one-loop two - and three - gluon
amplitudes vanish. The one-loop four-gluon vertex becomes extremely simple: all boundary terms
cancel out, and the bulk term involves only the scalar box integral B(1234):

Γ
a1a2a3a4 = 4g4tr(T a1T a2T a3T a4)T8B(1234)+non− cyclic permutations . (9.1)

Here T8 is a tensor known to string theorists [23]

T8 = tr( f1 f2 f3 f4)+ tr( f1 f2 f4 f3)+ tr( f1 f3 f2 f4)

−1
4

tr( f1 f2)tr( f3 f4)−
1
4

tr( f1 f3)tr( f2 f4)−
1
4

tr( f1 f4)tr( f2 f3) . (9.2)

10. Summary and Outlook

• We have shown how to use the string-inspired worldline formalism for generating form factor
decompositions of the N - gluon vertex well-adapted to the Ward identities, without actually
using those identities. Although the derivation is at the one-loop level, these decompositions
should be useful at higher loop orders, too, since the Ward identities are loop-independent.

• At the one-loop level, the formalism allows one to obtain also the coefficient functions of
these form factors in terms of Schwinger parameter integrals directly from the Bern-Kosower
master formula. Although this master formula is derived from the spin zero path integral, it
contains also the information on the spinor and gluon loop cases.
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• We have carried out this program explicitly for the three- and four-point cases.

• In particular, we have obtained a four-point generalization of the Ball-Chiu decomposition
in terms of 19 form factors, together with the corresponding one-loop parameter integrals.

• Presently the main limitation of the formalism is that, for the gluon loop case, it is still
restricted to the background field gauge with quantum Feynman gauge.

• As a side remark, let us mention here that our four-point form factor decomposition in the
abelian (four-photon) case reduces to only six instead of 19 tensors.
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