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1. Introduction

The one-loop cusp anomalous dimension

Γ(αs,ϕ) =CF
αs

π
(ϕ cothϕ−1) (1.1)

follows from the soft radiation function in classical electrodynamics: when a charge suddenly
changes its velocity, it emits electromagnetic waves; integrating the intensity over directions, one
obtains [2] ϕ cothϕ − 1. This result is probably known for more than 100 years, and should be
included in The Guinness Book of Records as the anomalous dimension known for a longest time.
The two-loop term has been calculated 30 years ago [3] (and rewritten via Li2,3 in [4]). The three-
loop term has been calculated recently [5, 6, 1].

The HQET heavy-quark field anomalous dimension (or the anomalous dimension of a straight
Wilson line) is known up to 3 loops. At 2 loops, after a wrong calculation [7], the correct result has
been obtained in [8], and later in [9, 10, 11, 12]. The three-loop result has been obtained in [13, 14]
(in the first paper [13] it has been found as a by-product of the calculation of the QCD on-shell
heavy-quark field renormalization constant, from the requirement that the QCD/HQET matching
coefficient for the heavy-quark field [15] is finite; at 2 loops this has been done in [11]).

The quark–antiquark potential is known at two [16, 17] and three [18, 19, 20] loops.
Some terms in perturbative series for these quantities can be obtained to all orders in αs.

2. Large n f terms

The terms with the highest power of n f at each order of perturbation theory for the cusp
anomalous dimension Γ have the structures CF(TFn f )

L−1αL
s (L ≥ 1). They are known to all or-

ders in αs. The terms with next to highest power of n f have the structures C2
F(TFn f )

L−2αL
s and

CFCA(TFn f )
L−2αL

s (L ≥ 3). The abelian ones (without CA) can be also found to all orders in αs.
For this purpose it is sufficient to consider QED with n f massless lepton flavors: CF = TF = 1,
CA = 0, β0 =−4

3 n f . Let’s introduce

b = β0
α

4π
. (2.1)

We assume b ∼ 1 and take into account all powers of b; 1/β0� 1 is our small parameter, and we
consider only a few terms in expansions in 1/β0.

At the leading and next-to-leading large-β0 orders (Lβ0 and NLβ0), the coordinate-space Wil-
son line of any shape is equal to

logW = , (2.2)

where the thick photon line is the full photon propagator with the NLβ0 accuracy. This simple
exponentiation formula is first broken at NNLβ0 order by the light-by-light diagram (figure 1).
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Figure 1: The light-by-light diagram is n f α4, and hence NNLβ0.

With the NLβ0 accuracy the renormalization constant Z of the heavy-to-heavy current (the
cusp) is given by

logW (t, t ′;ϕ)− logW (t, t ′;0) = − = logZ +finite (2.3)

(diagrams where both photon-interaction vertices are before the cusp, or after the cusp, cancel in
this difference). Going to momentum space, we can express it via the vertex function V (ω,ω ′;ϕ)

(it is convenient to set ω ′ = ω , in order to have a single-scale problem):

V (ω,ω;ϕ)−V (ω,ω;0) = − = logZ +finite . (2.4)

The HQET field renormalization can be obtained from V (ω,ω;0).
The static quark–antiquark potential can be considered similarly. The terms with the highest

power of n f in each order of perturbation theory have the structures CF(TFn f )
LαL+1

s (L ≥ 0). The
terms with next to highest power of n f have the structures C2

F(TFn f )
L−1αL+1

s and CFCA(TFn f )
L−1αL+1

s

(L ≥ 2); we’ll consider only the abelian ones. In the Coulomb gauge, up to NLβ0 the potential is
given by the full Coulomb photon propagator

V (~q ) = =−
e2

0
~q2

1
1−Π(−~q2)

(2.5)

(Π(q2) is gauge invariant in QED, and can be taken from covariant-gauge calculations). This simple
equality is first broken at NNLβ0 order by the light-by-light diagram (figure 2).

Figure 2: The light-by-light diagram is n f α4, and hence NNLβ0.

As discussed in [1], conformal symmetry leads to the relation between Γ(π−δ ) at δ → 0 and
V (~q ):

∆≡
[
δΓ(π−δ ;αs)

]
δ→0−

~q2V (~q;αs)

4π
= 0 (2.6)
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(this relation has been observed in [21] at 2 loops). In QCD (and QED) conformal symmetry is
anomalous (thus leading to non-zero β function), and [1]

∆ =
π

108
β0CF

(
αs

π

)3
(47CA−28TFn f )+O(α4

s ) . (2.7)

3. Leading β0 order

The photon self energy at the Lβ0 order is ∼ 1:

Π0(k2) = = β0
e2

0

(4π)d/2 e−γε D(ε)

ε
(−k2)−ε ,

D(ε) = eγε (1− ε)Γ(1+ ε)Γ2(1− ε)

(1−2ε)(1− 2
3 ε)Γ(1−2ε)

= 1+
5
3

ε + · · · (3.1)

The charge renormalization in the MS scheme is

β0
e2

0

(4π)d/2 e−γε = bZα(b)µ2ε . (3.2)

At the Lβ0 order we can solve the RG equation

d logZα

d logb
=− b

ε +b

and obtain
Zα =

1
1+b/ε

. (3.3)

The vertex V (ω,ω;ϕ) is given by the one-loop diagram with the factor 1/(1−Π(k2)) inserted
in the integrand. At the Lβ0 order (figure 3) the result can be written in the form

V (ω,ω;ϕ) = =
1
β0

∞

∑
L=1

f (ε,Lε;ϕ)

L
Π

L
0 +O

(
1

β 2
0

)
, (3.4)

where L is the number of loops and Π0 (3.1) is taken at−k2 = (−2ω)2. Reduction of such integrals
to master ones, as well as evaluation of these master integrals, has been considered in [22]. In

Figure 3: The L-loop vertex diagram at the Lβ0 order contains L−1 Π0 insertions.
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Landau gauge we obtain

f (ε,u;ϕ) =−
(1− 2

3 ε)Γ(2−2ε)Γ(1−u)Γ(1+2u)
(1− ε)Γ2(1− ε)Γ(1+ ε)Γ(2+u− ε)

×

[(
(2+u−2ε)cosϕ−u

)
2F1

(
1,1−u

3/2

∣∣∣∣∣ 1− cosϕ

2

)
+1

]
(3.5)

(in an arbitrary covariant gauge, a one-loop gauge-dependent contribution should be added). The
function f (ε,u;ϕ) is regular at the origin:

f (ε,u;ϕ) =
∞

∑
n,m=0

fnm(ϕ)ε
num . (3.6)

The renormalization constant Z can be written as

logZ =
Z1

ε
+

Z2

ε2 + · · · , Zn = O(bn) .

Only Z1 is needed in order to obtain

Γ(b;ϕ) =−2
dZ1(b;ϕ)

d logb
;

higher Zn contain no new information, and are uniquely reconstructed from Z1 using self-consistency
conditions. Choosing

µ
2 = D(ε)−1/ε(−2ω)2→ e−

5
3 ε(−2ω)2

we have

V (ω,ω;ϕ)−V (ω,ω;0) =
1
β0

∞

∑
L=1

f̄ (ε,Lε;ϕ)

L

(
b

ε +b

)L

+O

(
1

β 2
0

)
, (3.7)

where f̄ (ε,u;ϕ) = f (ε,u;ϕ)− f (ε,u;0). We expand in b, expand f̄ (ε,u;ϕ) in ε and u and select
only ε−1 terms in order to obtain Z1. All coefficients but fn0 cancel:

Z1(b;ϕ) = 2
ϕ cotϕ−1

β0

∞

∑
n=0

f̂n

n+1
(−b)n+1 ,

where

f̄ (ε,0;ϕ) =−2 f̂ (ε)(ϕ cotϕ−1) , f̂ (ε) =
∞

∑
n=0

f̂nε
n .

Therefore at the Lβ0 we obtain [23]

Γ(b;ϕ) = 4
b
β0

γ0(b)(ϕ cotϕ−1)+O

(
1

β 2
0

)
,

γ0(b) = f̂ (−b) =
(1+ 2

3 b)Γ(2+2b)
(1+b)Γ3(1+b)Γ(1−b)

= 1+
5
3

b− 1
3

b2−
(

2ζ3−
1
3

)
b3 +

(
π4

30
− 10

3
ζ3−

1
3

)
b4 + · · · (3.8)
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As a free bonus, we can obtain the HQET field anomalous dimension. The vertex function V
at ϕ = 0 is related to the HQET propagator S by the Ward identity

V (ω,ω ′;0) =
S−1(ω ′)−S−1(ω)

ω ′−ω
, V (ω,ω;0) =

dS−1(ω)

dω
. (3.9)

Therefore the renormalization constant of the HQET quark field Zh is given by

logV (ω,ω ′;0) =− logZh +finite .

Using

f (ε,u;0) =−3
(1− 2

3 ε)2Γ(2−2ε)Γ(1−u)Γ(1+2u)
(1− ε)Γ2(1− ε)Γ(1+ ε)Γ(2+u− ε)

,

we obtain in the Landau gauge [24]

γh(b) = 2
b
β0

γh0(b)+O

(
1

β 2
0

)
,

γh0(b) = f (−b,0;0) =

(
1+ 2

3 b
)2

Γ(2+2b)
(1+b)2Γ3(1+b)Γ(1−b)

= 1+
4
3

b− 5
9

b2−
(

2ζ3−
2
3

)
b3 +

(
π4

30
− 8

3
ζ3−

7
9

)
b4 + · · · (3.10)

(in an arbitrary covariant gauge, a one-loop gauge-dependent contribution should be added).
Now we consider the potential V (~q ) at the Lβ0 order. Choosing µ2 =~q2 we have

V (~q ) =− (4π)D/2eγε

β0D(ε)(~q2)1−ε
ε

∞

∑
L=1

(
D(ε)

b
ε +b

)L

+O

(
1

β 2
0

)
.

The sum here can be written as
∞

∑
L=1

g(ε,Lε)

(
b

ε +b

)L

, g(ε,u) = D(ε)u/ε =
∞

∑
n,m=0

gnmε
num .

This sum is equal to
b
ε

∞

∑
n=0

n!g0nbn +O(ε0)

(1/εn terms with n > 1 vanish, so that V (~q ) is automatically finite), where

g(0,u) = e
5
3 u , g0n =

1
n!

(
5
3

)n

. (3.11)

Therefore

V (~q ) =−(4π)2

~q2
b
β0

V0(b)+O

(
1

β 2
0

)
, V0(b) =

1
1− 5

3 b
. (3.12)

The conformal anomaly (2.6) at the Lβ0 order is

∆ = 4π
b3

β0
δ0(b)+O

(
1

β 2
0

)
,

δ0(b) =
V0(b)− γ0(b)

b2 =
28
9
+2
(

ζ3 +
58
27

)
b− 1

3

(
π4

10
−10ζ3−

652
27

)
b2 + · · · (3.13)

The first term here reproduces the TFn f term in (2.7).
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4. Next to leading β0 order

To obtain the photon propagator with the NLβ0 accuracy, we need the photon self-energy up
to 1/β0:

Π(k2) = +2 + = Π0(k2)+
Π1(k2)

β0
+O

(
1

β 2
0

)
, (4.1)

where the photon propagators in Π1 are taken at the Lβ0 order. The NLβ0 contribution can be
written in the form [25, 26]

Π1(k2) = 3ε

∞

∑
L=2

F(ε,Lε)

L
Π0(k2)L . (4.2)

Using integration by parts, one can reduce it to

F(ε,u) =
2(1−2ε)2(3−2ε)Γ2(1−2ε)

9(1− ε)(1−u)(2−u)Γ2(1− ε)Γ2(1+ ε)

×
[
−u

2−3ε− ε2 + ε(2+ ε)u− εu2

Γ2(1− ε)
I(1+u−2ε)

+2
2(1+ ε)(3−2ε)− (4+11ε−7ε2)u+ ε(8−3ε)u2− εu3

(1−u)(2−u)(1−u− ε)(2−u− ε)

Γ(1+u)Γ(1−u+ ε)

Γ(1−u− ε)Γ(1+u−2ε)

]
=

∞

∑
n,m=0

Fnmε
num , (4.3)

where the integral

I(n) = n =
1

πd

∫ ddk1 ddk2

k2
1k2

2(k1 + p)2(k2 + p)2 [(k1− k2)2]n

(euclidean, p2 = 1) can be expressed via a 3F2 function of unit argument [27, 28] (see the re-
view [29] for more references). The 3F2 function can be expanded up to any desired order using
known algorithms, the coefficients are expressed via multiple ζ values; therefore, the coefficients
Fnm can be calculated to any desired order.

The function F(ε,u) simplifies in some cases. In particular [25],

F(ε,0) =
(1+ ε)(1−2ε)2(1− 2

3 ε)2Γ(1−2ε)

(1− ε)2(1− 1
2 ε)Γ(1+ ε)Γ3(1− ε)

, (4.4)

so that Fn0 contain no multiple ζ values, only ζn. Also [26]

F(0,u) =
2
3

ψ ′
(
2− u

2

)
−ψ ′

(
1+ u

2

)
−ψ ′

(3−u
2

)
+ψ ′

(1+u
2

)
(1−u)(2−u)

(4.5)

so that F0m contains only ζ2n+1 [26]:

F0m =−32
3

[(m+1)/2]

∑
s=1

s
(
1−2−2s)(1−22s−m−2)

ζ2s+1 +
4
3
(m+1)

(
m+(m+6)2−m−3) . (4.6)
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The two-loop case is, of course, trivial:

F(ε,2ε) =
2

9ε2
3−2ε

1− ε

[
2
(1−2ε)2(2−2ε + ε2)

(1−3ε)(2−3ε)

Γ(1+2ε)Γ2(1−2ε)

Γ2(1+ ε)Γ(1− ε)Γ(1−3ε)
−2+ ε−2ε

2
]
.

Let’s write the charge renormalization constant Zα with the NLβ0 accuracy as

Zα(b) =
1

1+b/ε

[
1+

Zα1(b)
β0

+O

(
1

β 2
0

)]
,

Zα1(b) =
Zα11(b)

ε
+

Zα12(b)
ε2 + · · · , Zα1n = O(bn+1) . (4.7)

In the abelian theory, log(1−Π) expressed (3.2) via renormalized b should be equal to logZα +

finite. Equating the coefficients of ε−1 in the 1/β0 terms in this relation, we see that Zα11 (4.7) is
given by the coefficient of ε−1 in

−
(

1+
b
ε

)
Π1 .

It is convenient to choose

µ
2 = D(ε)−1/ε(−k2)→ e−

5
3 ε(−k2) ,

then

Π1 = 3ε

∞

∑
L=2

F(ε,Lε)

L

(
b

ε +b

)L

.

We expand in b and expand F(ε,u) in ε and u; selecting ε−1 terms, we find that all coefficients but
Fn0 cancel:

Zα11 =−3
∞

∑
n=0

Fn0(−b)n+2

(n+1)(n+2)
. (4.8)

The β function with NLβ0 accuracy is

β (b) = b+
β1(b)

β0
+O

(
1

β 2
0

)
, (4.9)

where [25, 26]

β1(b) =−
dZα11(b)

d logb
= 3

∞

∑
n=0

Fn0(−b)n+2

n+1

= 3b2 +
11
4

b3− 77
36

b4− 1
2

(
3ζ3 +

107
48

)
b5 +

1
5

(
π4

10
−11ζ3 +

251
48

)
b6 + · · · (4.10)

(the coefficients Fn0 follow from F(ε,0) (4.4)). The corresponding terms in the 5-loop QED β

function [30] are reproduced. We shall need the full Zα1, not just Zα11; integrating the RG equation
with the 1/β0 accuracy we obtain

Zα1(b) =−ε

∫ b

0

β1(b)db
b(ε +b)2 =−3

2
b2

ε
+

1
2
(4+F10ε)

b3

ε2 −
1
4
(
9+3F10ε +F20ε

2) b4

ε3 + · · ·

7
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At the NLβ0 order we should expand the photon propagator (1−Π0−Π1/β0)
−1 up to 1/β0

(Fig. 4). The vertex function (3.7) becomes

V (ω,ω;ϕ)−V (ω,ω;0) =
1
β0

∞

∑
L=1

f̄ (ε,Lε;ϕ)

L

(
b

ε +b

)L

×

[
1+L

Zα1

β0
+

3ε

β0

L−1

∑
L′=2

L−L′

L′
F(ε,L′ε)

]
+O

(
1

β 3
0

)
, (4.11)

where L′ is the number of loops in the Π1 insertion, and the 1/β0 correction Zα1 to the charge
renormalization (4.7) is taken into account. We expand in b and substitute the expansions (4.3)
and (3.6); in Z1, the coefficient of ε−1, all f̄nm except f̄n0 cancel. At the NLβ0 order the cusp
anomalous dimension is determined by the same f̂n coefficients as at the Lβ0 order:

Γ(b;ϕ) = 4
[

b
β0

γ0(b)−
b3

β 2
0

γ1(b)
]
(ϕ cotϕ−1)+O

(
1

β 3
0

)
, (4.12)

where

γ1(b) =−
3
2
[
F10 +2F01−2 f̂1

]
+
[
2F20 +3(F11 +F02)+3F01 f̂1−6 f̂2

]
b

−
[

3
4
(3F30 +4(F21 +F12 +F03))+(F20 +3(F11 +F02)) f̂1−

3
2
(
F10−2F01

)
f̂2−9 f̂3

]
b2 + · · ·

Figure 4: NLβ0 order diagrams contain one Π1 insertion (with any number of Π0 insertions inside) and any
number of Π0 insertions to the left and to the right of it.
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Substituting Fnm we obtain

γ1(b) = 12ζ3−
55
4
+

(
−π4

5
+40ζ3−

299
18

)
b

+

(
24ζ5−

2
3

π
4 +

233
6

ζ3 +
15211
864

)
b2

+

(
−48ζ

2
3 −

2
63

π
6 +80ζ5−

167
225

π
4 +

1168
15

ζ3−
971
240

)
b3

+

(
36ζ7 +

8
5

π
4
ζ3−160ζ

2
3 −

20
189

π
6 +

377
3

ζ5−
23
15

π
4 +

929
12

ζ3−
8017
1728

)
b4

+

(
−240ζ3ζ5−

4
225

π
8 +120ζ7 +

16
3

π
4
ζ3−

2776
21

ζ
2
3 −

914
3969

π
6

+
6826

21
ζ5−

1793
1350

π
4− 31693

315
ζ3 +

79433
4320

)
b5 + · · · (4.13)

This expansion can be extended to any number of loops. The first term in (4.13) agrees with the
C2

FTFn f term in the three-loop result [5, 6, 1]. The next term coincides with the C2
F(TFn f )

2α4
s term

in Γ recently calculated in [31]. Note that the last (8-loop) term here contains Fnm with n+m = 6,
n > 0, m > 0, which contain ζ5,3; but they enter as the combination F51 +F42 +F33 +F24 +F15 in
which this ζ5,3 cancels.

Similarly, the field anomalous dimension in Landau gauge at the NLβ0 order is

γh(b) =−6
[

b
β0

γh0(b)−
b3

β 2
0

γh1(b)
]
+O

(
1

β 3
0

)
,

γh1(b) = 3
(

4ζ3−
17
4

)
+

(
−π4

5
+36ζ3−

103
9

)
b

+

(
24ζ5−

3
5

π
4 +

59
2

ζ3 +
14579

864

)
b2

+

(
−48ζ

3
3 −

2
63

π
6 +72ζ5−

44
75

π
4 +

3229
45

ζ3−
5191
540

)
b3

+

(
36ζ7 +

8
5

π
4
ζ3−144ζ

2
3 −

2
21

π
6 +107ζ5−

946
675

π
4 +

9601
180

ζ3 +
22859
8640

)
b4

+

(
−240ζ3ζ5−

4
225

π
8 +108ζ7 +

24
5

π
4
ζ3−

664
7

ζ
2
3 −

272
1323

π
6

+
18574

63
ζ5−

119
135

π
4− 6263

63
ζ3 +

16103
1296

)
b5 + · · · (4.14)

The first term here coincides with the C2
FTFn f term in the three-loop result obtained by a direct

calculation [13, 14]. The last term contains the same combination of Fnm with n+m = 6, so that
ζ5,3 cancels.

The static potential at the NLβ0 level is

V (~q ) =−(4π)2

β0~q2 ε

∞

∑
L=1

g(ε,Lε)

(
b

ε +b

)L
[

1+L
Zα1

β0
+

3ε

β0

L−1

∑
L′=2

L−L′

L′
F(ε,L′ε)

]
+O

(
1

β 3
0

)
=−(4π)2

~q2

[
b
β0

V0(b)−
b3

β 2
0

V1(b)
]
+O

(
1

β 3
0

)
(4.15)
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where

V1(b) =−
3
2
[F10 +2F01 +2g01]+

1
2
[F20−6F02−6(F10 +3F01)g01−30g02]b

− 1
4
[
F30 +24F03−4(F20 +12F02)g01 +36(F10 +4F01)g02 +312g03

]
b2 + · · ·

contains only the same coefficients g0n (3.11) as the Lβ0 result, and only Fn0 and F0m are involved
(see (4.4–4.6)). We obtain

V1(b) = 12ζ3−
55
4
+

(
78ζ3−

7001
72

)
b+
(

60ζ5 +
723
2

ζ3−
147851

288

)
b2

+

(
770ζ5 +

π4

200
+

276901
180

ζ3−
70418923

25920

)
b3

+

(
1134ζ7 +

32297
5

ζ5 +
41

1800
π

4 +
402479

60
ζ3−

1249510621
77760

)
b4

+

(
21735ζ7 +

ζ 2
3
7

+
π6

1323
+

5911849
126

ζ5 +
41
720

π
4 +

48558187
1512

ζ3−
10255708489

93312

)
b5 + · · ·

(4.16)

Thus we have reproduced the CF(TFn f )
2α3

s and C2
FTFn f α

3
s terms in the two-loop potential [17],

as well as the CF(TFn f )
3α4

s and C2
F(TFn f )

2α4
s terms in the three-loop one [18]. This expansion

can be extended to any order; it contains only ζn because only Fn0 and F0m are present. Note the
pattern of the highest weights in (4.16): 3, 3, 5, 5, 7, 7, whereas one would expect 3, 4, 5, 6, 7, 8,
as in (4.13), (4.14). The conformal anomaly (2.6) at the NLβ0 order is

∆ = 4π

[
b3

β0
δ0(b)−

b4

β 2
0

δ1(b)
]
+O

(
1

β 3
0

)
,

δ1(b) =
π4

5
+38ζ3−

645
8

+

(
36ζ5 +

2
3

π
4 +

968
3

ζ3−
114691

216

)
b

+

(
48ζ

2
3 +

2
63

π
6 +690ζ5 +

269
360

π
4 +

52577
36

ζ3−
14062811

5184

)
b2

+

(
1098ζ7−

8
5

π
4
ζ3 +160ζ

2
3 +

20
189

π
6 +

95006
15

ζ5 +
2801
1800

π
4 +

198917
30

ζ3−
39035933

2430

)
b3

+

(
240ζ3ζ5 +

4
225

π
8 +21615ζ7−

16
3

π
4
ζ3 +

397
3

ζ
2
3 +

131
567

π
6

+
838699

18
ζ5 +

14959
10800

π
4 +

34793081
1080

ζ3−
51287121209

466560

)
b4 + · · · (4.17)

The b3/β 2
0 term has canceled, so that the coefficient of CF in the bracket in (2.7) is 0.

5. Conclusion

The terms with the highest powers of n f at each order of perturbation theory (CF(TFn f )
L−1αL

s

in Γ, γh; CF(TFn f )
LαL+1

s in V (~q )) are known, and given by explicit formulas (3.8), (3.10), (3.12).
The terms with the next to highest power of n f can have abelian (C2

F ) or non-abelian (CFCA) color
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structure. The abelian terms (C2
F(TFn f )

L−2αL
s (L≥ 3) in Γ, γh; C2

F(TFn f )
L−1αL+1

s (L≥ 2) in V (~q ))
are also known to all orders in αs, but only as algorithms which allow one to obtain (in principle)
any number of terms, see (4.13), (4.14), (4.16). The simple method used here is not applicable to
non-abelian terms.

I am grateful to J. M. Henn, G. P. Korchemsky, P. Marquard for collaboration [5, 6, 1]; to
D. J. Broadhurst for explaining the methods of [26] and useful discussions; to A. Vogt for compar-
ing the result [31] with (4.13) during the conference. Many thanks to the organizers of Loops and
Legs 2016. I am grateful to MITP and M. Neubert for hospitality in Mainz and financial support.
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