Leading and next to leading large n_{f} terms in the cusp anomalous dimension and the quark-antiquark potential

Andres Grozin*i
Mainz Institute of Theoretical Physics, Mainz University, Germany
Budker Institute of Nuclear Physics, Novosibirsk, Russia
Email: A.G.Grozin@inp.nsk.su

I discuss 3 related quantities: the cusp anomalous dimension, the HQET heavy-quark field anomaloos dimension, and the quark-antiquark potential. Leading large n_{f} terms can be calculated to all orders in α_{s}. Next to leading terms with the abelian color structure C_{F}^{2} also can be found to all orders (but not non-abelian $C_{F} C_{A}$ terms). This talk is based on Appendices C and D in [1].

[^0][^1]
1. Introduction

The one-loop cusp anomalous dimension

$$
\begin{equation*}
\Gamma\left(\alpha_{s}, \varphi\right)=C_{F} \frac{\alpha_{s}}{\pi}(\varphi \operatorname{coth} \varphi-1) \tag{1.1}
\end{equation*}
$$

follows from the soft radiation function in classical electrodynamics: when a charge suddenly changes its velocity, it emits electromagnetic waves; integrating the intensity over directions, one obtains [2] $\varphi \operatorname{coth} \varphi-1$. This result is probably known for more than 100 years, and should be included in The Guinness Book of Records as the anomalous dimension known for a longest time. The two-loop term has been calculated 30 years ago [3] (and rewritten via $\mathrm{Li}_{2,3}$ in [4]). The threeloop term has been calculated recently $[5,6,1]$.

The HQET heavy-quark field anomalous dimension (or the anomalous dimension of a straight Wilson line) is known up to 3 loops. At 2 loops, after a wrong calculation [7], the correct result has been obtained in [8], and later in [9, 10, 11, 12]. The three-loop result has been obtained in [13, 14] (in the first paper [13] it has been found as a by-product of the calculation of the QCD on-shell heavy-quark field renormalization constant, from the requirement that the QCD/HQET matching coefficient for the heavy-quark field [15] is finite; at 2 loops this has been done in [11]).

The quark-antiquark potential is known at two $[16,17]$ and three $[18,19,20]$ loops.
Some terms in perturbative series for these quantities can be obtained to all orders in α_{s}.

2. Large n_{f} terms

The terms with the highest power of n_{f} at each order of perturbation theory for the cusp anomalous dimension Γ have the structures $C_{F}\left(T_{F} n_{f}\right)^{L-1} \alpha_{s}^{L}(L \geq 1)$. They are known to all orders in α_{s}. The terms with next to highest power of n_{f} have the structures $C_{F}^{2}\left(T_{F} n_{f}\right)^{L-2} \alpha_{s}^{L}$ and $C_{F} C_{A}\left(T_{F} n_{f}\right)^{L-2} \alpha_{s}^{L}(L \geq 3)$. The abelian ones (without $\left.C_{A}\right)$ can be also found to all orders in α_{s}. For this purpose it is sufficient to consider QED with n_{f} massless lepton flavors: $C_{F}=T_{F}=1$, $C_{A}=0, \beta_{0}=-\frac{4}{3} n_{f}$. Let's introduce

$$
\begin{equation*}
b=\beta_{0} \frac{\alpha}{4 \pi} . \tag{2.1}
\end{equation*}
$$

We assume $b \sim 1$ and take into account all powers of $b ; 1 / \beta_{0} \ll 1$ is our small parameter, and we consider only a few terms in expansions in $1 / \beta_{0}$.

At the leading and next-to-leading large- β_{0} orders ($\mathrm{L} \beta_{0}$ and $\mathrm{NL} \beta_{0}$), the coordinate-space Wilson line of any shape is equal to

where the thick photon line is the full photon propagator with the $\mathrm{NL} \beta_{0}$ accuracy. This simple exponentiation formula is first broken at $\mathrm{NNL} \beta_{0}$ order by the light-by-light diagram (figure 1).

Figure 1: The light-by-light diagram is $n_{f} \alpha^{4}$, and hence $\mathrm{NNL} \beta_{0}$.

With the $\mathrm{NL} \beta_{0}$ accuracy the renormalization constant Z of the heavy-to-heavy current (the cusp) is given by

$$
\begin{equation*}
\log W\left(t, t^{\prime} ; \varphi\right)-\log W\left(t, t^{\prime} ; 0\right)= \tag{2.3}
\end{equation*}
$$

(diagrams where both photon-interaction vertices are before the cusp, or after the cusp, cancel in this difference). Going to momentum space, we can express it via the vertex function $V\left(\omega, \omega^{\prime} ; \varphi\right)$ (it is convenient to set $\omega^{\prime}=\omega$, in order to have a single-scale problem):

$$
\begin{equation*}
V(\omega, \omega ; \varphi)-V(\omega, \omega ; 0)=\log Z+\text { finite } \tag{2.4}
\end{equation*}
$$

The HQET field renormalization can be obtained from $V(\omega, \omega ; 0)$.
The static quark-antiquark potential can be considered similarly. The terms with the highest power of n_{f} in each order of perturbation theory have the structures $C_{F}\left(T_{F} n_{f}\right)^{L} \alpha_{s}^{L+1}(L \geq 0)$. The terms with next to highest power of n_{f} have the structures $C_{F}^{2}\left(T_{F} n_{f}\right)^{L-1} \alpha_{s}^{L+1}$ and $C_{F} C_{A}\left(T_{F} n_{f}\right)^{L-1} \alpha_{s}^{L+1}$ ($L \geq 2$); we'll consider only the abelian ones. In the Coulomb gauge, up to $\mathrm{NL} \beta_{0}$ the potential is given by the full Coulomb photon propagator

$$
\begin{equation*}
V(\vec{q})=\|--\|=-\frac{e_{0}^{2}}{\vec{q}^{2}} \frac{1}{1-\Pi\left(-\vec{q}^{2}\right)} \tag{2.5}
\end{equation*}
$$

$\left(\Pi\left(q^{2}\right)\right.$ is gauge invariant in QED, and can be taken from covariant-gauge calculations). This simple equality is first broken at $\mathrm{NNL} \beta_{0}$ order by the light-by-light diagram (figure 2).

Figure 2: The light-by-light diagram is $n_{f} \alpha^{4}$, and hence $\mathrm{NNL} \beta_{0}$.
As discussed in [1], conformal symmetry leads to the relation between $\Gamma(\pi-\delta)$ at $\delta \rightarrow 0$ and $V(\vec{q})$:

$$
\begin{equation*}
\Delta \equiv\left[\delta \Gamma\left(\pi-\delta ; \alpha_{s}\right)\right]_{\delta \rightarrow 0}-\frac{\vec{q}^{2} V\left(\vec{q} ; \alpha_{s}\right)}{4 \pi}=0 \tag{2.6}
\end{equation*}
$$

(this relation has been observed in [21] at 2 loops). In QCD (and QED) conformal symmetry is anomalous (thus leading to non-zero β function), and [1]

$$
\begin{equation*}
\Delta=\frac{\pi}{108} \beta_{0} C_{F}\left(\frac{\alpha_{s}}{\pi}\right)^{3}\left(47 C_{A}-28 T_{F} n_{f}\right)+\mathscr{O}\left(\alpha_{s}^{4}\right) \tag{2.7}
\end{equation*}
$$

3. Leading β_{0} order

The photon self energy at the $\mathrm{L} \beta_{0}$ order is ~ 1 :

$$
\begin{align*}
& \Pi_{0}\left(k^{2}\right)=\left\{\beta_{0} \frac{e_{0}^{2}}{(4 \pi)^{d / 2}} e^{-\gamma \varepsilon} \frac{D(\varepsilon)}{\varepsilon}\left(-k^{2}\right)^{-\varepsilon}\right. \\
& D(\varepsilon)=e^{\gamma \varepsilon} \frac{(1-\varepsilon) \Gamma(1+\varepsilon) \Gamma^{2}(1-\varepsilon)}{(1-2 \varepsilon)\left(1-\frac{2}{3} \varepsilon\right) \Gamma(1-2 \varepsilon)}=1+\frac{5}{3} \varepsilon+\cdots \tag{3.1}
\end{align*}
$$

The charge renormalization in the $\overline{\mathrm{MS}}$ scheme is

$$
\begin{equation*}
\beta_{0} \frac{e_{0}^{2}}{(4 \pi)^{d / 2}} e^{-\gamma \varepsilon}=b Z_{\alpha}(b) \mu^{2 \varepsilon} \tag{3.2}
\end{equation*}
$$

At the $\mathrm{L} \beta_{0}$ order we can solve the RG equation

$$
\frac{d \log Z_{\alpha}}{d \log b}=-\frac{b}{\varepsilon+b}
$$

and obtain

$$
\begin{equation*}
Z_{\alpha}=\frac{1}{1+b / \varepsilon} \tag{3.3}
\end{equation*}
$$

The vertex $V(\omega, \omega ; \varphi)$ is given by the one-loop diagram with the factor $1 /\left(1-\Pi\left(k^{2}\right)\right)$ inserted in the integrand. At the $\mathrm{L} \beta_{0}$ order (figure 3) the result can be written in the form

$$
\begin{equation*}
V(\omega, \omega ; \varphi)=\ldots=\frac{1}{\beta_{0}} \sum_{L=1}^{\infty} \frac{f(\varepsilon, L \varepsilon ; \varphi)}{L} \Pi_{0}^{L}+\mathscr{O}\left(\frac{1}{\beta_{0}^{2}}\right) \tag{3.4}
\end{equation*}
$$

where L is the number of loops and $\Pi_{0}(3.1)$ is taken at $-k^{2}=(-2 \omega)^{2}$. Reduction of such integrals to master ones, as well as evaluation of these master integrals, has been considered in [22]. In

Figure 3: The L-loop vertex diagram at the $\mathrm{L} \beta_{0}$ order contains $L-1 \Pi_{0}$ insertions.

Landau gauge we obtain

$$
\begin{align*}
& f(\varepsilon, u ; \varphi)=-\frac{\left(1-\frac{2}{3} \varepsilon\right) \Gamma(2-2 \varepsilon) \Gamma(1-u) \Gamma(1+2 u)}{(1-\varepsilon) \Gamma^{2}(1-\varepsilon) \Gamma(1+\varepsilon) \Gamma(2+u-\varepsilon)} \\
& \times\left[((2+u-2 \varepsilon) \cos \varphi-u)_{2} F_{1}\left(\left.\begin{array}{c}
1,1-u \\
3 / 2
\end{array} \right\rvert\, \frac{1-\cos \varphi}{2}\right)+1\right] \tag{3.5}
\end{align*}
$$

(in an arbitrary covariant gauge, a one-loop gauge-dependent contribution should be added). The function $f(\varepsilon, u ; \varphi)$ is regular at the origin:

$$
\begin{equation*}
f(\varepsilon, u ; \varphi)=\sum_{n, m=0}^{\infty} f_{n m}(\varphi) \varepsilon^{n} u^{m} \tag{3.6}
\end{equation*}
$$

The renormalization constant Z can be written as

$$
\log Z=\frac{Z_{1}}{\varepsilon}+\frac{Z_{2}}{\varepsilon^{2}}+\cdots, \quad Z_{n}=\mathscr{O}\left(b^{n}\right)
$$

Only Z_{1} is needed in order to obtain

$$
\Gamma(b ; \varphi)=-2 \frac{d Z_{1}(b ; \varphi)}{d \log b}
$$

higher Z_{n} contain no new information, and are uniquely reconstructed from Z_{1} using self-consistency conditions. Choosing

$$
\mu^{2}=D(\varepsilon)^{-1 / \varepsilon}(-2 \omega)^{2} \rightarrow e^{-\frac{5}{3} \varepsilon}(-2 \omega)^{2}
$$

we have

$$
\begin{equation*}
V(\omega, \omega ; \varphi)-V(\omega, \omega ; 0)=\frac{1}{\beta_{0}} \sum_{L=1}^{\infty} \frac{\bar{f}(\varepsilon, L \varepsilon ; \varphi)}{L}\left(\frac{b}{\varepsilon+b}\right)^{L}+\mathscr{O}\left(\frac{1}{\beta_{0}^{2}}\right) \tag{3.7}
\end{equation*}
$$

where $\bar{f}(\varepsilon, u ; \varphi)=f(\varepsilon, u ; \varphi)-f(\varepsilon, u ; 0)$. We expand in b, expand $\bar{f}(\varepsilon, u ; \varphi)$ in ε and u and select only ε^{-1} terms in order to obtain Z_{1}. All coefficients but $f_{n 0}$ cancel:

$$
Z_{1}(b ; \varphi)=2 \frac{\varphi \cot \varphi-1}{\beta_{0}} \sum_{n=0}^{\infty} \frac{\hat{f}_{n}}{n+1}(-b)^{n+1}
$$

where

$$
\bar{f}(\varepsilon, 0 ; \varphi)=-2 \hat{f}(\varepsilon)(\varphi \cot \varphi-1), \quad \hat{f}(\varepsilon)=\sum_{n=0}^{\infty} \hat{f}_{n} \varepsilon^{n}
$$

Therefore at the $\mathrm{L} \beta_{0}$ we obtain [23]

$$
\begin{align*}
& \Gamma(b ; \varphi)=4 \frac{b}{\beta_{0}} \gamma_{0}(b)(\varphi \cot \varphi-1)+\mathscr{O}\left(\frac{1}{\beta_{0}^{2}}\right) \\
& \gamma_{0}(b)=\hat{f}(-b)=\frac{\left(1+\frac{2}{3} b\right) \Gamma(2+2 b)}{(1+b) \Gamma^{3}(1+b) \Gamma(1-b)} \\
& =1+\frac{5}{3} b-\frac{1}{3} b^{2}-\left(2 \zeta_{3}-\frac{1}{3}\right) b^{3}+\left(\frac{\pi^{4}}{30}-\frac{10}{3} \zeta_{3}-\frac{1}{3}\right) b^{4}+\cdots \tag{3.8}
\end{align*}
$$

As a free bonus, we can obtain the HQET field anomalous dimension. The vertex function V at $\varphi=0$ is related to the HQET propagator S by the Ward identity

$$
\begin{equation*}
V\left(\omega, \omega^{\prime} ; 0\right)=\frac{S^{-1}\left(\omega^{\prime}\right)-S^{-1}(\omega)}{\omega^{\prime}-\omega}, \quad V(\omega, \omega ; 0)=\frac{d S^{-1}(\omega)}{d \omega} \tag{3.9}
\end{equation*}
$$

Therefore the renormalization constant of the HQET quark field Z_{h} is given by

$$
\log V\left(\omega, \omega^{\prime} ; 0\right)=-\log Z_{h}+\text { finite }
$$

Using

$$
f(\varepsilon, u ; 0)=-3 \frac{\left(1-\frac{2}{3} \varepsilon\right)^{2} \Gamma(2-2 \varepsilon) \Gamma(1-u) \Gamma(1+2 u)}{(1-\varepsilon) \Gamma^{2}(1-\varepsilon) \Gamma(1+\varepsilon) \Gamma(2+u-\varepsilon)}
$$

we obtain in the Landau gauge [24]

$$
\begin{align*}
& \gamma_{h}(b)=2 \frac{b}{\beta_{0}} \gamma_{h 0}(b)+\mathscr{O}\left(\frac{1}{\beta_{0}^{2}}\right) \\
& \gamma_{h 0}(b)=f(-b, 0 ; 0)=\frac{\left(1+\frac{2}{3} b\right)^{2} \Gamma(2+2 b)}{(1+b)^{2} \Gamma^{3}(1+b) \Gamma(1-b)} \\
& =1+\frac{4}{3} b-\frac{5}{9} b^{2}-\left(2 \zeta_{3}-\frac{2}{3}\right) b^{3}+\left(\frac{\pi^{4}}{30}-\frac{8}{3} \zeta_{3}-\frac{7}{9}\right) b^{4}+\cdots \tag{3.10}
\end{align*}
$$

(in an arbitrary covariant gauge, a one-loop gauge-dependent contribution should be added).
Now we consider the potential $V(\vec{q})$ at the $\mathrm{L} \beta_{0}$ order. Choosing $\mu^{2}=\vec{q}^{2}$ we have

$$
V(\vec{q})=-\frac{(4 \pi)^{D / 2} e^{\gamma \varepsilon}}{\beta_{0} D(\varepsilon)\left(\vec{q}^{2}\right)^{1-\varepsilon}} \varepsilon \sum_{L=1}^{\infty}\left(D(\varepsilon) \frac{b}{\varepsilon+b}\right)^{L}+\mathscr{O}\left(\frac{1}{\beta_{0}^{2}}\right)
$$

The sum here can be written as

$$
\sum_{L=1}^{\infty} g(\varepsilon, L \varepsilon)\left(\frac{b}{\varepsilon+b}\right)^{L}, \quad g(\varepsilon, u)=D(\varepsilon)^{u / \varepsilon}=\sum_{n, m=0}^{\infty} g_{n m} \varepsilon^{n} u^{m}
$$

This sum is equal to

$$
\frac{b}{\varepsilon} \sum_{n=0}^{\infty} n!g_{0 n} b^{n}+\mathscr{O}\left(\varepsilon^{0}\right)
$$

($1 / \varepsilon^{n}$ terms with $n>1$ vanish, so that $V(\vec{q})$ is automatically finite), where

$$
\begin{equation*}
g(0, u)=e^{\frac{5}{3} u}, \quad g_{0 n}=\frac{1}{n!}\left(\frac{5}{3}\right)^{n} \tag{3.11}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
V(\vec{q})=-\frac{(4 \pi)^{2}}{\vec{q}^{2}} \frac{b}{\beta_{0}} V_{0}(b)+\mathscr{O}\left(\frac{1}{\beta_{0}^{2}}\right), \quad V_{0}(b)=\frac{1}{1-\frac{5}{3} b} . \tag{3.12}
\end{equation*}
$$

The conformal anomaly (2.6) at the $\mathrm{L} \beta_{0}$ order is

$$
\begin{align*}
& \Delta=4 \pi \frac{b^{3}}{\beta_{0}} \delta_{0}(b)+\mathscr{O}\left(\frac{1}{\beta_{0}^{2}}\right) \\
& \delta_{0}(b)=\frac{V_{0}(b)-\gamma_{0}(b)}{b^{2}}=\frac{28}{9}+2\left(\zeta_{3}+\frac{58}{27}\right) b-\frac{1}{3}\left(\frac{\pi^{4}}{10}-10 \zeta_{3}-\frac{652}{27}\right) b^{2}+\cdots \tag{3.13}
\end{align*}
$$

The first term here reproduces the $T_{F} n_{f}$ term in (2.7).

4. Next to leading β_{0} order

To obtain the photon propagator with the $\mathrm{NL} \beta_{0}$ accuracy, we need the photon self-energy up to $1 / \beta_{0}$:

$$
\Pi\left(k^{2}\right)=\left\{+2\left\{\begin{array}{l}
 \tag{4.1}\\
\sim
\end{array}=\Pi_{0}\left(k^{2}\right)+\frac{\Pi_{1}\left(k^{2}\right)}{\beta_{0}}+\mathscr{O}\left(\frac{1}{\beta_{0}^{2}}\right),\right.\right.
$$

where the photon propagators in Π_{1} are taken at the $\mathrm{L} \beta_{0}$ order. The $\mathrm{NL} \beta_{0}$ contribution can be written in the form [25, 26]

$$
\begin{equation*}
\Pi_{1}\left(k^{2}\right)=3 \varepsilon \sum_{L=2}^{\infty} \frac{F(\varepsilon, L \varepsilon)}{L} \Pi_{0}\left(k^{2}\right)^{L} \tag{4.2}
\end{equation*}
$$

Using integration by parts, one can reduce it to

$$
\begin{align*}
& F(\varepsilon, u)=\frac{2(1-2 \varepsilon)^{2}(3-2 \varepsilon) \Gamma^{2}(1-2 \varepsilon)}{9(1-\varepsilon)(1-u)(2-u) \Gamma^{2}(1-\varepsilon) \Gamma^{2}(1+\varepsilon)} \\
& \times\left[-u \frac{2-3 \varepsilon-\varepsilon^{2}+\varepsilon(2+\varepsilon) u-\varepsilon u^{2}}{\Gamma^{2}(1-\varepsilon)} I(1+u-2 \varepsilon)\right. \\
& \left.\quad+2 \frac{2(1+\varepsilon)(3-2 \varepsilon)-\left(4+11 \varepsilon-7 \varepsilon^{2}\right) u+\varepsilon(8-3 \varepsilon) u^{2}-\varepsilon u^{3}}{(1-u)(2-u)(1-u-\varepsilon)(2-u-\varepsilon)} \frac{\Gamma(1+u) \Gamma(1-u+\varepsilon)}{\Gamma(1-u-\varepsilon) \Gamma(1+u-2 \varepsilon)}\right] \\
& =\sum_{n, m=0}^{\infty} F_{n m} \varepsilon^{n} u^{m}, \tag{4.3}
\end{align*}
$$

where the integral

$$
I(n)=\left\{n=\frac{1}{\pi^{d}} \int \frac{d^{d} k_{1} d^{d} k_{2}}{k_{1}^{2} k_{2}^{2}\left(k_{1}+p\right)^{2}\left(k_{2}+p\right)^{2}\left[\left(k_{1}-k_{2}\right)^{2}\right]^{n}}\right.
$$

(euclidean, $p^{2}=1$) can be expressed via a ${ }_{3} F_{2}$ function of unit argument [27, 28] (see the review [29] for more references). The ${ }_{3} F_{2}$ function can be expanded up to any desired order using known algorithms, the coefficients are expressed via multiple ζ values; therefore, the coefficients $F_{n m}$ can be calculated to any desired order.

The function $F(\varepsilon, u)$ simplifies in some cases. In particular [25],

$$
\begin{equation*}
F(\varepsilon, 0)=\frac{(1+\varepsilon)(1-2 \varepsilon)^{2}\left(1-\frac{2}{3} \varepsilon\right)^{2} \Gamma(1-2 \varepsilon)}{(1-\varepsilon)^{2}\left(1-\frac{1}{2} \varepsilon\right) \Gamma(1+\varepsilon) \Gamma^{3}(1-\varepsilon)} \tag{4.4}
\end{equation*}
$$

so that $F_{n 0}$ contain no multiple ζ values, only ζ_{n}. Also [26]

$$
\begin{equation*}
F(0, u)=\frac{2}{3} \frac{\psi^{\prime}\left(2-\frac{u}{2}\right)-\psi^{\prime}\left(1+\frac{u}{2}\right)-\psi^{\prime}\left(\frac{3-u}{2}\right)+\psi^{\prime}\left(\frac{1+u}{2}\right)}{(1-u)(2-u)} \tag{4.5}
\end{equation*}
$$

so that $F_{0 m}$ contains only $\zeta_{2 n+1}$ [26]:

$$
\begin{equation*}
F_{0 m}=-\frac{32}{3} \sum_{s=1}^{[(m+1) / 2]} s\left(1-2^{-2 s}\right)\left(1-2^{2 s-m-2}\right) \zeta_{2 s+1}+\frac{4}{3}(m+1)\left(m+(m+6) 2^{-m-3}\right) \tag{4.6}
\end{equation*}
$$

The two-loop case is, of course, trivial:

$$
F(\varepsilon, 2 \varepsilon)=\frac{2}{9 \varepsilon^{2}} \frac{3-2 \varepsilon}{1-\varepsilon}\left[2 \frac{(1-2 \varepsilon)^{2}\left(2-2 \varepsilon+\varepsilon^{2}\right)}{(1-3 \varepsilon)(2-3 \varepsilon)} \frac{\Gamma(1+2 \varepsilon) \Gamma^{2}(1-2 \varepsilon)}{\Gamma^{2}(1+\varepsilon) \Gamma(1-\varepsilon) \Gamma(1-3 \varepsilon)}-2+\varepsilon-2 \varepsilon^{2}\right]
$$

Let's write the charge renormalization constant Z_{α} with the $N L \beta_{0}$ accuracy as

$$
\begin{align*}
& Z_{\alpha}(b)=\frac{1}{1+b / \varepsilon}\left[1+\frac{Z_{\alpha 1}(b)}{\beta_{0}}+\mathscr{O}\left(\frac{1}{\beta_{0}^{2}}\right)\right] \\
& Z_{\alpha 1}(b)=\frac{Z_{\alpha 11}(b)}{\varepsilon}+\frac{Z_{\alpha 12}(b)}{\varepsilon^{2}}+\cdots, \quad Z_{\alpha 1 n}=\mathscr{O}\left(b^{n+1}\right) \tag{4.7}
\end{align*}
$$

In the abelian theory, $\log (1-\Pi)$ expressed (3.2) via renormalized b should be equal to $\log Z_{\alpha}+$ finite. Equating the coefficients of ε^{-1} in the $1 / \beta_{0}$ terms in this relation, we see that $Z_{\alpha 11}$ (4.7) is given by the coefficient of ε^{-1} in

$$
-\left(1+\frac{b}{\varepsilon}\right) \Pi_{1}
$$

It is convenient to choose

$$
\mu^{2}=D(\varepsilon)^{-1 / \varepsilon}\left(-k^{2}\right) \rightarrow e^{-\frac{5}{3} \varepsilon}\left(-k^{2}\right)
$$

then

$$
\Pi_{1}=3 \varepsilon \sum_{L=2}^{\infty} \frac{F(\varepsilon, L \varepsilon)}{L}\left(\frac{b}{\varepsilon+b}\right)^{L}
$$

We expand in b and expand $F(\varepsilon, u)$ in ε and u; selecting ε^{-1} terms, we find that all coefficients but $F_{n 0}$ cancel:

$$
\begin{equation*}
Z_{\alpha 11}=-3 \sum_{n=0}^{\infty} \frac{F_{n 0}(-b)^{n+2}}{(n+1)(n+2)} \tag{4.8}
\end{equation*}
$$

The β function with $N L \beta_{0}$ accuracy is

$$
\begin{equation*}
\beta(b)=b+\frac{\beta_{1}(b)}{\beta_{0}}+\mathscr{O}\left(\frac{1}{\beta_{0}^{2}}\right) \tag{4.9}
\end{equation*}
$$

where [25, 26]

$$
\begin{align*}
& \beta_{1}(b)=-\frac{d Z_{\alpha 11}(b)}{d \log b}=3 \sum_{n=0}^{\infty} \frac{F_{n 0}(-b)^{n+2}}{n+1} \\
& =3 b^{2}+\frac{11}{4} b^{3}-\frac{77}{36} b^{4}-\frac{1}{2}\left(3 \zeta_{3}+\frac{107}{48}\right) b^{5}+\frac{1}{5}\left(\frac{\pi^{4}}{10}-11 \zeta_{3}+\frac{251}{48}\right) b^{6}+\cdots \tag{4.10}
\end{align*}
$$

(the coefficients $F_{n 0}$ follow from $F(\varepsilon, 0)(4.4)$). The corresponding terms in the 5-loop QED β function [30] are reproduced. We shall need the full $Z_{\alpha 1}$, not just $Z_{\alpha 11}$; integrating the RG equation with the $1 / \beta_{0}$ accuracy we obtain

$$
Z_{\alpha 1}(b)=-\varepsilon \int_{0}^{b} \frac{\beta_{1}(b) d b}{b(\varepsilon+b)^{2}}=-\frac{3}{2} \frac{b^{2}}{\varepsilon}+\frac{1}{2}\left(4+F_{10} \varepsilon\right) \frac{b^{3}}{\varepsilon^{2}}-\frac{1}{4}\left(9+3 F_{10} \varepsilon+F_{20} \varepsilon^{2}\right) \frac{b^{4}}{\varepsilon^{3}}+\cdots
$$

At the $\mathrm{NL} \beta_{0}$ order we should expand the photon propagator $\left(1-\Pi_{0}-\Pi_{1} / \beta_{0}\right)^{-1}$ up to $1 / \beta_{0}$ (Fig. 4). The vertex function (3.7) becomes

$$
\begin{align*}
& V(\omega, \omega ; \varphi)-V(\omega, \omega ; 0)=\frac{1}{\beta_{0}} \sum_{L=1}^{\infty} \frac{\bar{f}(\varepsilon, L \varepsilon ; \varphi)}{L}\left(\frac{b}{\varepsilon+b}\right)^{L} \\
& \times\left[1+L \frac{Z_{\alpha 1}}{\beta_{0}}+\frac{3 \varepsilon}{\beta_{0}} \sum_{L^{\prime}=2}^{L-1} \frac{L-L^{\prime}}{L^{\prime}} F\left(\varepsilon, L^{\prime} \varepsilon\right)\right]+\mathscr{O}\left(\frac{1}{\beta_{0}^{3}}\right) \tag{4.11}
\end{align*}
$$

where L^{\prime} is the number of loops in the Π_{1} insertion, and the $1 / \beta_{0}$ correction $Z_{\alpha 1}$ to the charge renormalization (4.7) is taken into account. We expand in b and substitute the expansions (4.3) and (3.6); in Z_{1}, the coefficient of ε^{-1}, all $\bar{f}_{n m}$ except $\bar{f}_{n 0}$ cancel. At the $\mathrm{NL} \beta_{0}$ order the cusp anomalous dimension is determined by the same \hat{f}_{n} coefficients as at the $\mathrm{L} \beta_{0}$ order:

$$
\begin{equation*}
\Gamma(b ; \varphi)=4\left[\frac{b}{\beta_{0}} \gamma_{0}(b)-\frac{b^{3}}{\beta_{0}^{2}} \gamma_{1}(b)\right](\varphi \cot \varphi-1)+\mathscr{O}\left(\frac{1}{\beta_{0}^{3}}\right) \tag{4.12}
\end{equation*}
$$

where

$$
\begin{aligned}
& \gamma_{1}(b)=-\frac{3}{2}\left[F_{10}+2 F_{01}-2 \hat{f}_{1}\right]+\left[2 F_{20}+3\left(F_{11}+F_{02}\right)+3 F_{01} \hat{f}_{1}-6 \hat{f}_{2}\right] b \\
& -\left[\frac{3}{4}\left(3 F_{30}+4\left(F_{21}+F_{12}+F_{03}\right)\right)+\left(F_{20}+3\left(F_{11}+F_{02}\right)\right) \hat{f}_{1}-\frac{3}{2}\left(F_{10}-2 F_{01}\right) \hat{f}_{2}-9 \hat{f}_{3}\right] b^{2}+\cdots
\end{aligned}
$$

Figure 4: $\mathrm{NL} \beta_{0}$ order diagrams contain one Π_{1} insertion (with any number of Π_{0} insertions inside) and any number of Π_{0} insertions to the left and to the right of it.

Substituting $F_{n m}$ we obtain

$$
\begin{align*}
& \gamma_{1}(b)=12 \zeta_{3}-\frac{55}{4}+\left(-\frac{\pi^{4}}{5}+40 \zeta_{3}-\frac{299}{18}\right) b \\
& +\left(24 \zeta_{5}-\frac{2}{3} \pi^{4}+\frac{233}{6} \zeta_{3}+\frac{15211}{864}\right) b^{2} \\
& +\left(-48 \zeta_{3}^{2}-\frac{2}{63} \pi^{6}+80 \zeta_{5}-\frac{167}{225} \pi^{4}+\frac{1168}{15} \zeta_{3}-\frac{971}{240}\right) b^{3} \\
& +\left(36 \zeta_{7}+\frac{8}{5} \pi^{4} \zeta_{3}-160 \zeta_{3}^{2}-\frac{20}{189} \pi^{6}+\frac{377}{3} \zeta_{5}-\frac{23}{15} \pi^{4}+\frac{929}{12} \zeta_{3}-\frac{8017}{1728}\right) b^{4} \\
& +\left(-240 \zeta_{3} \zeta_{5}-\frac{4}{225} \pi^{8}+120 \zeta_{7}+\frac{16}{3} \pi^{4} \zeta_{3}-\frac{2776}{21} \zeta_{3}^{2}-\frac{914}{3969} \pi^{6}\right. \\
& \left.\quad+\frac{6826}{21} \zeta_{5}-\frac{1793}{1350} \pi^{4}-\frac{31693}{315} \zeta_{3}+\frac{79433}{4320}\right) b^{5}+\cdots \tag{4.13}
\end{align*}
$$

This expansion can be extended to any number of loops. The first term in (4.13) agrees with the $C_{F}^{2} T_{F} n_{f}$ term in the three-loop result $[5,6,1]$. The next term coincides with the $C_{F}^{2}\left(T_{F} n_{f}\right)^{2} \alpha_{s}^{4}$ term in Γ recently calculated in [31]. Note that the last (8-loop) term here contains $F_{n m}$ with $n+m=6$, $n>0, m>0$, which contain $\zeta_{5,3}$; but they enter as the combination $F_{51}+F_{42}+F_{33}+F_{24}+F_{15}$ in which this $\zeta_{5,3}$ cancels.

Similarly, the field anomalous dimension in Landau gauge at the $\mathrm{NL} \beta_{0}$ order is

$$
\begin{align*}
& \gamma_{h}(b)=-6\left[\frac{b}{\beta_{0}} \gamma_{h 0}(b)-\frac{b^{3}}{\beta_{0}^{2}} \gamma_{h 1}(b)\right]+\mathscr{O}\left(\frac{1}{\beta_{0}^{3}}\right) \\
& \gamma_{h 1}(b)=3\left(4 \zeta_{3}-\frac{17}{4}\right)+\left(-\frac{\pi^{4}}{5}+36 \zeta_{3}-\frac{103}{9}\right) b \\
& +\left(24 \zeta_{5}-\frac{3}{5} \pi^{4}+\frac{59}{2} \zeta_{3}+\frac{14579}{864}\right) b^{2} \\
& +\left(-48 \zeta_{3}^{3}-\frac{2}{63} \pi^{6}+72 \zeta_{5}-\frac{44}{75} \pi^{4}+\frac{3229}{45} \zeta_{3}-\frac{5191}{540}\right) b^{3} \\
& +\left(36 \zeta_{7}+\frac{8}{5} \pi^{4} \zeta_{3}-144 \zeta_{3}^{2}-\frac{2}{21} \pi^{6}+107 \zeta_{5}-\frac{946}{675} \pi^{4}+\frac{9601}{180} \zeta_{3}+\frac{22859}{8640}\right) b^{4} \\
& +\left(-240 \zeta_{3} \zeta_{5}-\frac{4}{225} \pi^{8}+108 \zeta_{7}+\frac{24}{5} \pi^{4} \zeta_{3}-\frac{664}{7} \zeta_{3}^{2}-\frac{272}{1323} \pi^{6}\right. \\
& \left.\quad+\frac{18574}{63} \zeta_{5}-\frac{119}{135} \pi^{4}-\frac{6263}{63} \zeta_{3}+\frac{16103}{1296}\right) b^{5}+\cdots \tag{4.14}
\end{align*}
$$

The first term here coincides with the $C_{F}^{2} T_{F} n_{f}$ term in the three-loop result obtained by a direct calculation [13, 14]. The last term contains the same combination of $F_{n m}$ with $n+m=6$, so that $\zeta_{5,3}$ cancels.

The static potential at the $\mathrm{NL} \beta_{0}$ level is

$$
\begin{align*}
V(\vec{q}) & =-\frac{(4 \pi)^{2}}{\beta_{0} \vec{q}^{2}} \varepsilon \sum_{L=1}^{\infty} g(\varepsilon, L \varepsilon)\left(\frac{b}{\varepsilon+b}\right)^{L}\left[1+L \frac{Z_{\alpha 1}}{\beta_{0}}+\frac{3 \varepsilon}{\beta_{0}} \sum_{L^{\prime}=2}^{L-1} \frac{L-L^{\prime}}{L^{\prime}} F\left(\varepsilon, L^{\prime} \varepsilon\right)\right]+\mathscr{O}\left(\frac{1}{\beta_{0}^{3}}\right) \\
& =-\frac{(4 \pi)^{2}}{\vec{q}^{2}}\left[\frac{b}{\beta_{0}} V_{0}(b)-\frac{b^{3}}{\beta_{0}^{2}} V_{1}(b)\right]+\mathscr{O}\left(\frac{1}{\beta_{0}^{3}}\right) \tag{4.15}
\end{align*}
$$

where

$$
\begin{aligned}
& V_{1}(b)=-\frac{3}{2}\left[F_{10}+2 F_{01}+2 g_{01}\right]+\frac{1}{2}\left[F_{20}-6 F_{02}-6\left(F_{10}+3 F_{01}\right) g_{01}-30 g_{02}\right] b \\
& -\frac{1}{4}\left[F_{30}+24 F_{03}-4\left(F_{20}+12 F_{02}\right) g_{01}+36\left(F_{10}+4 F_{01}\right) g_{02}+312 g_{03}\right] b^{2}+\cdots
\end{aligned}
$$

contains only the same coefficients $g_{0 n}$ (3.11) as the $\mathrm{L} \beta_{0}$ result, and only $F_{n 0}$ and $F_{0 m}$ are involved (see (4.4-4.6)). We obtain

$$
\begin{align*}
& V_{1}(b)=12 \zeta_{3}-\frac{55}{4}+\left(78 \zeta_{3}-\frac{7001}{72}\right) b+\left(60 \zeta_{5}+\frac{723}{2} \zeta_{3}-\frac{147851}{288}\right) b^{2} \\
& +\left(770 \zeta_{5}+\frac{\pi^{4}}{200}+\frac{276901}{180} \zeta_{3}-\frac{70418923}{25920}\right) b^{3} \\
& +\left(1134 \zeta_{7}+\frac{32297}{5} \zeta_{5}+\frac{41}{1800} \pi^{4}+\frac{402479}{60} \zeta_{3}-\frac{1249510621}{77760}\right) b^{4} \\
& +\left(21735 \zeta_{7}+\frac{\zeta_{3}^{2}}{7}+\frac{\pi^{6}}{1323}+\frac{5911849}{126} \zeta_{5}+\frac{41}{720} \pi^{4}+\frac{48558187}{1512} \zeta_{3}-\frac{10255708489}{93312}\right) b^{5}+\cdots \tag{4.16}
\end{align*}
$$

Thus we have reproduced the $C_{F}\left(T_{F} n_{f}\right)^{2} \alpha_{s}^{3}$ and $C_{F}^{2} T_{F} n_{f} \alpha_{s}^{3}$ terms in the two-loop potential [17], as well as the $C_{F}\left(T_{F} n_{f}\right)^{3} \alpha_{s}^{4}$ and $C_{F}^{2}\left(T_{F} n_{f}\right)^{2} \alpha_{s}^{4}$ terms in the three-loop one [18]. This expansion can be extended to any order; it contains only ζ_{n} because only $F_{n 0}$ and $F_{0 m}$ are present. Note the pattern of the highest weights in (4.16): $3,3,5,5,7,7$, whereas one would expect $3,4,5,6,7,8$, as in (4.13), (4.14). The conformal anomaly (2.6) at the $\mathrm{NL} \beta_{0}$ order is

$$
\begin{align*}
& \Delta=4 \pi\left[\frac{b^{3}}{\beta_{0}} \delta_{0}(b)-\frac{b^{4}}{\beta_{0}^{2}} \delta_{1}(b)\right]+\mathscr{O}\left(\frac{1}{\beta_{0}^{3}}\right) \\
& \delta_{1}(b)=\frac{\pi^{4}}{5}+38 \zeta_{3}-\frac{645}{8}+\left(36 \zeta_{5}+\frac{2}{3} \pi^{4}+\frac{968}{3} \zeta_{3}-\frac{114691}{216}\right) b \\
& +\left(48 \zeta_{3}^{2}+\frac{2}{63} \pi^{6}+690 \zeta_{5}+\frac{269}{360} \pi^{4}+\frac{52577}{36} \zeta_{3}-\frac{14062811}{5184}\right) b^{2} \\
& +\left(1098 \zeta_{7}-\frac{8}{5} \pi^{4} \zeta_{3}+160 \zeta_{3}^{2}+\frac{20}{189} \pi^{6}+\frac{95006}{15} \zeta_{5}+\frac{2801}{1800} \pi^{4}+\frac{198917}{30} \zeta_{3}-\frac{39035933}{2430}\right) b^{3} \\
& +\left(240 \zeta_{3} \zeta_{5}+\frac{4}{225} \pi^{8}+21615 \zeta_{7}-\frac{16}{3} \pi^{4} \zeta_{3}+\frac{397}{3} \zeta_{3}^{2}+\frac{131}{567} \pi^{6}\right. \\
& \left.\quad+\frac{838699}{18} \zeta_{5}+\frac{14959}{10800} \pi^{4}+\frac{34793081}{1080} \zeta_{3}-\frac{51287121209}{466560}\right) b^{4}+\cdots \tag{4.17}
\end{align*}
$$

The b^{3} / β_{0}^{2} term has canceled, so that the coefficient of C_{F} in the bracket in (2.7) is 0 .

5. Conclusion

The terms with the highest powers of n_{f} at each order of perturbation theory $\left(C_{F}\left(T_{F} n_{f}\right)^{L-1} \alpha_{s}^{L}\right.$ in $\Gamma, \gamma_{h} ; C_{F}\left(T_{F} n_{f}\right)^{L} \alpha_{s}^{L+1}$ in $\left.V(\vec{q})\right)$ are known, and given by explicit formulas (3.8), (3.10), (3.12). The terms with the next to highest power of n_{f} can have abelian $\left(C_{F}^{2}\right)$ or non-abelian $\left(C_{F} C_{A}\right)$ color
structure. The abelian terms $\left(C_{F}^{2}\left(T_{F} n_{f}\right)^{L-2} \alpha_{s}^{L}(L \geq 3)\right.$ in $\Gamma, \gamma_{h} ; C_{F}^{2}\left(T_{F} n_{f}\right)^{L-1} \alpha_{s}^{L+1}(L \geq 2)$ in $\left.V(\vec{q})\right)$ are also known to all orders in α_{s}, but only as algorithms which allow one to obtain (in principle) any number of terms, see (4.13), (4.14), (4.16). The simple method used here is not applicable to non-abelian terms.

I am grateful to J. M. Henn, G. P. Korchemsky, P. Marquard for collaboration [5, 6, 1]; to D. J. Broadhurst for explaining the methods of [26] and useful discussions; to A. Vogt for comparing the result [31] with (4.13) during the conference. Many thanks to the organizers of Loops and Legs 2016. I am grateful to MITP and M. Neubert for hospitality in Mainz and financial support. Partial support from the Russian Ministry of Education and Science is acknowledged.

References

[1] A. Grozin, J. M. Henn, G. P. Korchemsky, P. Marquard, The three-loop cusp anomalous dimension in QCD and its supersymmetric extensions, JHEP 01 (2016) 140 [arXiv:1510.07803 [hep-ph]].
[2] L. D. Landau, E. M. Lifshitz, The classical theory of fields, 4-th ed., Butterworth-Heinemann (1980), the problem after Sect. 69;
J. D. Jackson, Classical electrodynamics, 3-rd ed., Wiley (1999), Sect. 15.6.
[3] G. P. Korchemsky, A. V. Radyushkin, Renormalization of the Wilson loops beyond the leading order, Nucl. Phys. B 283 (1987) 342.
[4] N. Kidonakis, Two-loop soft anomalous dimensions and NNLL resummation for heavy quark production, Phys. Rev. Lett. 102 (2009) 232003 [arXiv:0903.2561 [hep-ph]].
[5] A. G. Grozin, J. M. Henn, G. P. Korchemsky, P. Marquard, The n_{f} terms of the three-loop cusp anomalous dimension in QCD, Proceedings of Science LL2014 (2014) 016 [arXiv:1406.7828 [hep-th]].
[6] A. G. Grozin, J. M. Henn, G. P. Korchemsky, P. Marquard, Three loop cusp anomalous dimension in $Q C D$, Phys. Rev. Lett. 114 (2015) 062006 [arXiv:1409.0023 [hep-ph]].
[7] S. Aoyama, The renormalization of the string operator in QCD, Nucl. Phys. B 194 (1982) 513.
[8] D. Knauss, K. Scharnhorst, Two loop renormalization of nonsmooth string operators in Yang-Mills theory, Annalen Phys. 41 (1984) 331.
[9] X. D. Ji, M. J. Musolf, Subleading logarithmic mass dependence in heavy meson form-factors, Phys. Lett. B 257 (1991) 409.
[10] D. J. Broadhurst, A. G. Grozin, Two loop renormalization of the effective field theory of a static quark, Phys. Lett. B 267 (1991) 105 [hep-ph/9908362].
[11] D. J. Broadhurst, N. Gray, K. Schilcher, Gauge invariant on-shell Z_{2} in $Q E D, Q C D$ and the effective field theory of a static quark, Z. Phys. C 52 (1991) 111.
[12] V. Giménez, Two loop calculation of the anomalous dimension of the axial current with static heavy quarks, Nucl. Phys. B 375 (1992) 582.
[13] K. Melnikov, T. van Ritbergen, The Three loop on-shell renormalization of QCD and QED, Nucl. Phys. B 591 (2000) 515 [hep-ph/0005131].
[14] K. G. Chetyrkin, A. G. Grozin, Three loop anomalous dimension of the heavy-light quark current in HQET, Nucl. Phys. B 666 (2003) 289 [hep-ph/0303113].
[15] A. G. Grozin, Matching heavy-quark fields in QCD and HQET at three loops, Phys. Lett. B 692 (2010) 161 [arXiv:1004.2662 [hep-ph]].
[16] M. Peter, The Static quark-anti-quark potential in QCD to three loops, Phys. Rev. Lett. 78 (1997) 602 [hep-ph/9610209];
The static potential in QCD: A full two loop calculation, Nucl. Phys. B 501 (1997) 471 [hep-ph/9702245].
[17] Y. Schröder, The static potential in QCD to two loops, Phys. Lett. B 447 (1999) 321 [hep-ph/9812205].
[18] A. V. Smirnov, V. A. Smirnov, M. Steinhauser, Fermionic contributions to the three-loop static potential, Phys. Lett. B 668 (2008) 293 [arXiv:0809.1927 [hep-ph]].
[19] A. V. Smirnov, V. A. Smirnov, M. Steinhauser, Three-loop static potential, Phys. Rev. Lett. 104 (2010) 112002 [arXiv:0911.4742 [hep-ph]].
[20] C. Anzai, Y. Kiyo, Y. Sumino, Static QCD potential at three-loop order, Phys. Rev. Lett. 104 (2010) 112003 [arXiv:0911.4335 [hep-ph]].
[21] W. Kilian, T. Mannel, T. Ohl, Unimagined imaginary parts in heavy quark effective field theory, Phys. Lett. B 304 (1993) 311 [hep-ph/9303224].
[22] A. G. Grozin, A. V. Kotikov, HQET heavy-heavy vertex diagram with two velocities, arXiv:1106.3912 [hep-ph].
[23] M. Beneke, V. M. Braun, Power corrections and renormalons in Drell-Yan production, Nucl. Phys. B 454 (1995) 253 [hep-ph/9506452].
[24] D. J. Broadhurst, A. G. Grozin, Matching QCD and HQET heavy-light currents at two loops and beyond, Phys. Rev. D 52 (1995) 4082 [hep-ph/9410240].
[25] A. Palanques-Mestre, P. Pascual, The $1 / N_{f}$ expansion of the γ and β functions in $Q E D$, Commun. Math. Phys. 95 (1984) 277.
[26] D. J. Broadhurst, Large N expansion of QED: Asymptotic photon propagator and contributions to the muon anomaly, for any number of loops, Z. Phys. C 58 (1993) 339.
[27] A. V. Kotikov, The Gegenbauer polynomial technique: The evaluation of a class of Feynman diagrams, Phys. Lett. B 375 (1996) 240 [hep-ph/9512270].
[28] D. J. Broadhurst, J. A. Gracey, D. Kreimer, Beyond the triangle and uniqueness relations: Nonzeta counterterms at large N from positive knots, Z. Phys. C 75 (1997) 559 [hep-th/9607174].
[29] A. G. Grozin, Massless two-loop self-energy diagram: Historical review, Int. J. Mod. Phys. A 27 (2012) 1230018 [arXiv:1206.2572 [hep-ph]].
[30] P. A. Baikov, K. G. Chetyrkin, J. H. Kühn, J. Rittinger, Vector correlator in massless QCD at order $\mathscr{O}\left(\alpha_{s}^{4}\right)$ and the QED β-function at five loop, JHEP 07 (2012) 017 [arXiv:1206.1284 [hep-ph]].
[31] B. Ruijl, T. Ueda, J. A. M. Vermaseren, J. Davies, A. Vogt, First Forcer results on deep-inelastic scattering and related quantities, arXiv:1605.08408 (Proceedings Loops and Legs 2016).

[^0]: Loops and Legs in Quantum Field Theory
 24-29 April 2016
 Leipzig, Germany

[^1]: *Speaker.
 ${ }^{\dagger}$ Preprint number MITP/16-044

