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1. Introduction

Dimensional regularization is the canonical method of controlling the divergences when renor-
malizing a quantum field theory in perturbation theory. The theory is extendedfrom the critical
dimensionD to d whered = D − 2ε andε is the regularizing parameter. The poles inε are then
absorbed in renormalization constants prior to the construction of the renormalization group func-
tions. The process is complete when these functions are determined ind = D dimensions. What
is less apparent in the procedure is the connectivity different theories,with the same underlying
symmetry, have with each other in different dimensions. This connection derives from the critical
point renormalization group equation and the Wilson-Fisher (WF) fixed point which is defined as
the non-trivial zero of theβ -function ind-dimensions. This connectivity has seen a recent revival
in analysing conformal field theories beyond two dimensions as well as related interest in thea-
theorem, ultraviolet-infrared duality across dimensions and conformal windows. Here we review
the renormalization group functions of scalar and gauge theories in dimensions higher than four in
their respective universality classes.

2. Scalar theories

We begin by reprising the picture of a tower of theories ind-dimensions all lieing in the same
universality class at the WF fixed point by considering scalar theories withanO(N) symmetry. The
base theory is in two dimensions which is theO(N) nonlinearσ model with the Lagrangian

Lσ =
1
2

(

∂µφ i)2
+

1
2

σ
(

φ iφ i −
1
λ

)

(2.1)

whereλ is the coupling constant andσ is a Lagrange multiplier field. Throughout the set of
theories in the same universality class the two fields have dimensions[φ i ] = d/2−1 and[σ ] = 2
in d-dimensions. While (2.1) is non-renormalizable perturbatively it is renormalizable in the 1/N
expansion which is a dimensionless coupling parameter ind-dimensions. This point of view of the
renormalizability is the key to understanding the dimensional connectivity. Thecommon feature
of theories in the same universality class is the core interaction such as that in(2.1). For instance,
relative to four dimensions (2.1) is critically equivalent toO(N) φ4 theory which can be formulated
in two ways since

L(4) =
1
2

(

∂µφ i)2
−

g
8

(

φ iφ i)2
=

1
2

(

∂µφ i)2
+

1
2

σφ iφ i −
σ2

2g
. (2.2)

In the latter Lagrangianσ is an auxiliary field and appears quadratically rather than linearly to
ensure perturbative renormalizability in the critical dimension. These additional σ dependent parts
of a Lagrangian over and above the core interaction are termed spectators since they are only present
in specific dimensions. Once (2.1) and (2.2) are viewed in this way the method toconstruct the
Lagrangians in the universal tower is evident and requires a core interaction and renormalizability.
The six dimensional extension,L(6), was given in [1, 2, 3, 4, 5] and extended to eight in [6] and
their respective Lagrangians are

L(6) =
1
2

(

∂µφ i)2
+

1
2

(

∂µσ
)2

+
g1

2
σφ iφ i +

g2

6
σ3
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L(8) =
1
2

(

∂µφ i)2
+

1
2

(�σ)2 +
1
2

g1σφ iφ i +
1
6

g2σ2
�σ +

1
24

g2
3σ4 (2.3)

where the number of independent couplings increases with dimension. Forall of these theories the
critical exponents which are derived from the renormalization group functions have been computed
in the largeN expansion, [7, 8, 9, 10]. For instance, the first three terms of the exponents

η = γφ (gc) , ω = β ′(gc) (2.4)

are known, [7, 8, 9, 10], as functions ofd whereγφ (g) is the wave function anomalous dimension
andgc represents the vector of critical couplings. It is worth noting that the derivation of largeN
exponents uses analytic regularization of the Feynman integrals and not dimensional regularization
which is effectively the reason why one can study field theories ind-dimensions. Moreover, the
largeN method is applicable to non-abelian gauge theories butNf , the number of quark flavours, is
used as the expansion parameter rather than the number of colours.

Recent activity forL(6) has involved the extension of the three loop results of [11, 12] to
the O(N) case, [3, 5], and then to four loops, [13]. For the latter computation one can derive
all the basic renormalization group functions from evaluating a 2-point function. This is because
in six dimensions a 1/(k2)2 propagator is infrared safe unlike in four dimensions. Therefore to
extract the coupling constant renormalization one can nullify one externalleg momentum on the
vertex function relegating it effectively to a 2-point function evaluation. Such a nullification can be
accommodated within the usual renormalization of the field 2-point function, [13]. This approach
substantially reduces the number of Feynman graphs to be evaluated. However, to achieve this
we have used the Laporta algorithm, [14], and specifically the REDUZE encoding of it, [15, 16], to
construct all the integration by parts relations between the required integrals. The final step requires
the substitution of the basic master integrals. As the 2-point four loop master integrals are known
in four dimensions, [17], we can determine the corresponding ones in six dimensions by applying
Tarasov’s method, [18, 19]. We use FORM, [20], throughout to handle the underlying algebra. The
main results are provided in [13] but we note that the renormalization group functions for theO(1)

version ofL(6) are, [11, 12, 13],

β (g) =
3
8

g3 −
125
288

g5 + 5[2592ζ3 +6617]
g7

41472

+ [− 4225824ζ3 +349920ζ4 +1244160ζ5−3404365]
g9

1492992

γφ (g) = −
1
12

g2 +
13
432

g4 + [2592ζ3−5195]
g6

62208

+ [10080ζ3 +18144ζ4−69120ζ5 +53449]
g8

248832
(2.5)

whereζn is the Riemann zeta-function. Finally, all the renormalization group functions evaluated
for the O(N) versions of (2.3), [2, 3, 6, 13], are in full agreement with the known large N expo-
nents which supports the Wilson’s vision of a tower of theories ind-dimensions within a universal
underlying theory.
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3. Gauge theories

We can also extend the process to non-supersymmetric gauge theories. First, we focus on
six-dimensional QCD. The gauge fixed Lagrangian in a linear covariant gauge is, [6],

L(6)
GI = −

1
4

(

DµGa
νσ

)

(DµGaνσ ) +
g2

6
f abcGa

µν Gbµσ Gcν
σ + iψ̄ iI D/ψ iI

−
1

2α
(

∂µ∂ νAa
ν
)

(∂ µ∂ σ Aa
σ ) − c̄a

�
(

∂ µDµc
)a

(3.1)

whereα is the gauge parameter. In six dimensions there are two independent gluonicoperators,
[21], as a consequence of the Bianchi identities and we have chosen to use a 2-leg and a 3-leg
operator. The latter is important in effective field theories in four dimensions. Though in six di-
mensions a 4-fermi operator has dimension 10 and hence is absent in (3.1). As a consequence the
gluon and ghost propagators have double poles in the squared momentum unlike in four dimen-
sions. Structurally (3.1) is similar to the eight dimensionalO(N) scalar theory, [6]. However, as an
aside the propagators of (3.1) would lead to a confining inter-quark potential in four dimensions.
Indeed there is a Schwinger-Dyson solution of four dimensional QCD which constructs the effec-
tive infrared Lagrangian, [22], and takes the precise form (3.1) withg2 massive. Continuing this
theme (3.1) can be extended to include lower dimension operators with

L(6)
m = L(6) +m1ψ̄ iI ψ iI −

1
4

m2
2Ga

µνGaµν −
1

2α
m2

3(∂ µAa
µ)2

− m2
3c̄a(

∂ µDµc
)a

−
1
2

m4
4Aa

µAaµ + m4
4α c̄aca . (3.2)

Heremi are masses to ensure each term is dimension six. Interestingly the Landau gauge prop-
agators derived from (3.2) are formally the same as those which are usedto model the infrared
structure of the propagators on the lattice in four dimensions, [23]. For instance,

〈Aa
µ(p)Ab

ν(−p)〉
∣

∣

α=0
= −

δ ab

[(p2)2 +m2
2p2 +m4

4]

[

ηµν −
pµ pν

p2

]

〈ca(p)c̄b(−p)〉
∣

∣

α=0 = −
δ ab

p2[p2 +m2
3]

. (3.3)

Returning to the massless Lagrangian we have calculated the wave function anomalous dimen-
sions and theβ -functions to two loops for non-zeroα . For the latter we evaluated the three 3-point
vertices at the fully symmetric point with non-zero momenta flowing through eachexternal leg.
Unlike in a renormalization of four dimensional QCD nullifying an external leg momentum is not
infrared safe in six dimensions as such an operation would produce propagators of the form 1/(k2)4

wherek is a loop momentum. By renormalizing these three vertices and obtaining the sameMS
results for the renormalization ofg1 is a non-trivial check on our computation. Like the scalar the-
ory analysis we have again used the Laporta algorithm, [14], to obtain our renormalization group
functions. For instance, the twoMS β -functions are, [6],

β1(g1,g2) = [−249CA−16Nf TF ]
g3

1

120
+

[

−50682C2
Ag3

1 +2439C2
Ag2

1g2 +3129C2
Ag1g2

2−315C2
Ag3

2−1328CANf TFg3
1
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−624CANf TFg2
1g2 +96CANf TFg1g2

2−3040CFNf TFg3
1

] g2
1

4320

β2(g1,g2) =
[

81CAg3
1−552CAg2

1g2 +135CAg1g2
2−15CAg3

2 +104Nf TFg3
1−48Nf TFg2

1g2
] 1

120
(3.4)

where for space reasons we only note the one loop term ofβ2(g1,g2). The full expression is given
in [6]. We note that the gauge coupling constant is asymptotically free for all(positive) values
of Nf . A final check on the calculation of the renormalization group functions is if the critical
exponents derived from them at the WF fixed point agree with the largeNf exponents computed
using Vasiliev’s method. In this instance the base theory in two dimensions whichserves to seed
this fixed point universal theory is the non-abelian Thirring model (NATM) which can be written
in two ways as

LNATM = iψ̄ i∂/ψ i +
g̃
2

(

ψ̄ iTaγµψ i)2
= iψ̄ iD/ψ i −

1
2

Aa
µAaµ (3.5)

where in strictly two dimensionsAa
µ ∝ ψ̄ iTaγµψ i is an auxiliary field. Various largeNf critical

exponents are known, [24, 25, 26], and expanding these in anε-expansion relative to six dimensions
the two loop renormalization group functions are in total agreement. That this happens for (3.1)
indicates that it is correct which is not as remarkable as the observation of[27] that (3.5) does
not contain gluonic vertices. The largeNf d-dimensional critical exponents derived from (3.5)
contain information on the contribution from the triple, quartic andquintic vertices of the higher
dimensional gauge theories.

Evidence for the connection of the field theories across the dimensions is not just restricted
to the basic renormalization group functions. We have also computed the two loop MS correc-
tions to the anomalous dimensions,γ(n)(g1,g2), of the flavour non-singlet twist-2 Wilson operators
ψ̄γµ1Dµ2 . . .Dµnψ using (3.1). For the lowest moments we find

γ(2)(g1,g2) = 2CFg2
1

+[26841CAg2
1−1200CAg1g2−600CAg2

2−4200CFg2
1 +1264g2

1Nf TF ]
CFg2

1

1800

γ(3)(g1,g2) =
49
15

CFg2
1

+[186321CAg2
1−10950CAg1g2−4200CAg2

2−23564CFg2
1 +9104g2

1Nf TF ]
7CFg2

1

54000
.

(3.6)

Again evaluating these at the WF fixed point to determine the critical exponentthey are in exact
agreement with the leading order largeNf exponent of [28].

One application of (3.4) is that the location of the conformal window can be determined in an
ε expansion withd = 6 − 2ε. In four dimensionalSU(3) QCD the window is at 9≤ Nf ≤ 16,
[29]. By numerically solving

β1(g1,g2) = β2(g1,g2) = 0 ,
∂β1

∂g1

∂β2

∂g2
−

∂β1

∂g2

∂β2

∂g1
= 0 (3.7)
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we find one real solution labelled byA which is, [6],

Nf (A)) = 2.797566
CA

TF
+ [2.198165CF −3.432003CA]

ε
TF

+ O(ε2) (3.8)

where we retain the four dimensional trace convention. ForSU(3) we have

Nf (A)

∣

∣

SU(3)
= 16.785398− 14.730246ε + O(ε2) . (3.9)

Unlike the situation withO(N) scalar theories the boundary in strictly six dimensions is the same
as in four dimensions.

Further insight into the structure of higher dimensional gauge theories canbe gained by fo-
cusing on the extension of Quantum Electrodynamics (QED) to six andeightdimensions. This is
because one can compute to higher order than in the non-abelian case especially in eight dimen-
sions where there are a substantial number of 4-gluon operators. The respective Lagrangians are,
[30, 6],

L(6)
∣

∣

∣

U(1)
= −

1
4

(

∂µFνσ
)

(∂ µFνσ ) −
1

2α
(

∂µ∂ νAν
)

(∂ µ∂ σ Aσ ) + iψ̄ iD/ψ i

L(8)
∣

∣

∣

U(1)
= −

1
4

(

∂µ∂νFσρ
)

(∂ µ∂ νFσρ) −
1

2α
(

∂µ∂ νAν
)

(∂ µ∂ σ Aσ )

+ iψ̄ iD/ψ i +
g2

2

32
FµνFµνFσρFσρ +

g2
3

8
FµνFµσ FνρFσρ (3.10)

where we have extended the gauge fixing sector to eight dimensions for a linear covariant gauge.
The renormalization group functions of each theory are known to variousloop orders, [30, 6],
including the electron mass anomalous dimensions. In all cases the critical exponents derived
from these are in full agreement with the corresponding critical exponents to whatever order they
are known in largeNf , [31, 24, 26]. This again substantiates the picture of a tower of theories
connected via the WF fixed point. Several general features emerge in theQED analysis. First, we
have verified the result of [30] that six dimensional QED is asymptotically free. By contrast the
eight dimensional theory is like its four dimensional partner. Under the assumption that there are
no triple photon vertices in any QED formulation in higher dimensions thenD-dimensional QED
is asymptotically free inD = 2 + 4r dimensions for integerr ≥ 1. For both Lagrangians (3.10)
we have explicitly checked that the Ward-Takahashi identity holds. In addition a novel feature
emerges for the electron anomalous dimension in a linear covariant gauge. In four dimensions the
gauge parameter appears only in the one loop term, [32, 33], and is absent thereafter in any explicit
evaluation. The six and eight dimensional theories share the same propertyto three and two loops
respectively. Therefore, if a rigorous proof of this observation emerges it should be applicable to
all dimensions.

4. Discussion

We have reviewed recent work in six and higher dimensional scalar and gauge field theories
and provided solid evidence for the picture of a tower of connected theories in d-dimensions ac-
cessed by the WF fixed point. This extends from strictly two dimensions whereconformal field
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theories give the foundation for the connection. Results in gauge theoriesshow a similar vision but
with the observation that structurally eight dimensional scalar theory is similar tosix dimensional
QCD. From the higher dimensional quantum field theory side the next stage isto extend loop com-
putations to higher order to refine the fixed point structure as will as to gain more insight into the
operators which drive any infrared fixed points in QCD in the context of the underlying universal
theory. Form the computational point of view one question is whether there isa deeper connection
of the Tarasov construction of relatingd- and(d+2)-dimensional Feynman integrals with the un-
derlying field theories. In other words is there a way of proceeding more fundamentally via a path
integral construction without having to make the connection at the renormalization group function
level?
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