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1. Introduction

Dimensional regularization is the canonical method of controlling the divesgewhen renor-
malizing a quantum field theory in perturbation theory. The theory is extefidedthe critical
dimensionD to d whered = D — 2¢ ande¢ is the regularizing parameter. The polesiare then
absorbed in renormalization constants prior to the construction of thematipation group func-
tions. The process is complete when these functions are determided b dimensions. What
is less apparent in the procedure is the connectivity different theavidsthe same underlying
symmetry, have with each other in different dimensions. This connectidveddrom the critical
point renormalization group equation and the Wilson-Fisher (WF) fixedt pdiich is defined as
the non-trivial zero of thg-function ind-dimensions. This connectivity has seen a recent revival
in analysing conformal field theories beyond two dimensions as well asdatagrest in thea-
theorem, ultraviolet-infrared duality across dimensions and conformalowisdHere we review
the renormalization group functions of scalar and gauge theories in dimertsgher than four in
their respective universality classes.

2. Scalar theories

We begin by reprising the picture of a tower of theoriedidimensions all lieing in the same
universality class at the WF fixed point by considering scalar theoriesami@{N) symmetry. The
base theory is in two dimensions which is tB&N) nonlinearc model with the Lagrangian

Lo — %(%fp’)z + %0 (w‘w‘—j) (2.1)
where A is the coupling constant and is a Lagrange multiplier field. Throughout the set of
theories in the same universality class the two fields have dimengigns d/2— 1 and[g] = 2
in d-dimensions. While[(21) is non-renormalizable perturbatively it is renoratailizin the YN
expansion which is a dimensionless coupling parameterdimensions. This point of view of the
renormalizability is the key to understanding the dimensional connectivity.cdhrenon feature
of theories in the same universality class is the core interaction such as @al)inFor instance,
relative to four dimension$ (2.1) is critically equivalenQ@N) @* theory which can be formulated
in two ways since

2
L@ = % ((9;1(;0')2 — g ((p'(p')2 = % (dy(p')2 + %J(p'(p' — (ng . (2.2)

In the latter Lagrangiaw is an auxiliary field and appears quadratically rather than linearly to
ensure perturbative renormalizability in the critical dimension. These addlittodependent parts
of a Lagrangian over and above the core interaction are termed spssiat® they are only present
in specific dimensions. Oncg (R.1) arjd |2.2) are viewed in this way the methmmhstruct the
Lagrangians in the universal tower is evident and requires a coradatiam and renormalizability.
The six dimensional extensioh(®, was given in [[L[R[]3]4] 5] and extended to eight[in [6] and
their respective Lagrangians are

2 0
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1 11
L® = 2 (0u0)" + 5(00)° + Sa10¢'¢ + £00°00 + —ggo (2.3)

N

where the number of independent couplings increases with dimensioall Bbthese theories the
critical exponents which are derived from the renormalization grougtioms have been computed
in the largeN expansion,[[7[]§] 9, 10]. For instance, the first three terms of thenexyt®

n=Ye(d) , @=PB'(g) (2.4)

are known, [[7[18[]9[_30], as functions dfwherey,(g) is the wave function anomalous dimension
andg. represents the vector of critical couplings. It is worth noting that thevaion of largeN
exponents uses analytic regularization of the Feynman integrals and notsitima regularization
which is effectively the reason why one can study field theoried-@imensions. Moreover, the
largeN method is applicable to non-abelian gauge theorieNpuhe number of quark flavours, is
used as the expansion parameter rather than the number of colours.

Recent activity forL(®) has involved the extension of the three loop results[of [I]L, 12] to
the O(N) case, [B[b], and then to four loop$, |[13]. For the latter computation anederive
all the basic renormalization group functions from evaluating a 2-poirdtimm. This is because
in six dimensions a A(k?)? propagator is infrared safe unlike in four dimensions. Therefore to
extract the coupling constant renormalization one can nullify one extegahomentum on the
vertex function relegating it effectively to a 2-point function evaluatiomct®a nullification can be
accommodated within the usual renormalization of the field 2-point func{i@}, [his approach
substantially reduces the number of Feynman graphs to be evaluated.véioteeachieve this
we have used the Laporta algorithifn,][14], and specifically the e encoding of it, [Ip[ J6], to
construct all the integration by parts relations between the required itgeghe final step requires
the substitution of the basic master integrals. As the 2-point four loop mastgrals@re known
in four dimensions,[[17], we can determine the corresponding ones irfirsengions by applying
Tarasov’s method[]18,119]. We useRwm, [2Q], throughout to handle the underlying algebra. The
main results are provided ifi JIL3] but we note that the renormalization grogliéns for theD(1)

version ofL(® are, [[1[TP[3],

B(O) = S0 — SoogP + 525925+ 6617 o
gd ~ 288 41472
+ [ 42258245 + 34992, + 1244165 — 3404362}1432 =
Ye(9) = — ig2 + 4—329 + (25923 — 5195 62208
+ [1008; + 18144 — 691205 + 53449 4%88 = (2.5)

where(, is the Riemann zeta-function. Finally, all the renormalization group functiealsi@ted
for the O(N) versions of [2]3),[]2[]3] 6, 13], are in full agreement with the knowgda expo-
nents which supports the Wilson’s vision of a tower of theoried-timensions within a universal
underlying theory.
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3. Gaugetheories

We can also extend the process to non-supersymmetric gauge theorigts.wEifocus on
six-dimensional QCD. The gauge fixed Lagrangian in a linear covarameis, [|],

Lgl) _ %(Dueeo) (DuGavo) %Zfacha Gbqucv i il wwll
- % (0u0"A2) (9H9°A%) — C*01(d¥Dyc)” (3.1)

wherea is the gauge parameter. In six dimensions there are two independent ghpenators,
[B7)], as a consequence of the Bianchi identities and we have chosese @ 2-leg and a 3-leg
operator. The latter is important in effective field theories in four dimensidgheugh in six di-
mensions a 4-fermi operator has dimension 10 and hence is absent inX84 ronsequence the
gluon and ghost propagators have double poles in the squared momemtkenini four dimen-
sions. Structurally[(3]1) is similar to the eight dimensio@éN) scalar theory,[]6]. However, as an
aside the propagators ¢f (B.1) would lead to a confining inter-quark fiiténfour dimensions.
Indeed there is a Schwinger-Dyson solution of four dimensional QCDhwdoastructs the effec-
tive infrared Lagrangian[[22], and takes the precise fdrnj (3.1) gdtmassive. Continuing this
theme [3]1) can be extended to include lower dimension operators with

1
Ly = LO gy — mgea 1l Gan
1
— mBc® (0HDye)? — §m4A‘f}Aa“ + miacdc®. (3.2)

Herem are masses to ensure each term is dimension six. Interestingly the Landgmap-
agators derived fron{ (3.2) are formally the same as those which aretaiseddel the infrared
structure of the propagators on the lattice in four dimensi¢nk, [23]. Ftarios,

a 5ab Vv
BPAPDoo =~ [(P?)2+ mgp? + ] [”‘” - pﬂpﬂ
ab
(PP g = pZ[p‘Z% . 3:3)

Returning to the massless Lagrangian we have calculated the wave fumaioalaus dimen-
sions and thg-functions to two loops for non-zem. For the latter we evaluated the three 3-point
vertices at the fully symmetric point with non-zero momenta flowing through eatdrnal leg.
Unlike in a renormalization of four dimensional QCD nullifying an external legmantum is not
infrared safe in six dimensions as such an operation would producagatips of the form A(k?)*
wherek is a loop momentum. By renormalizing these three vertices and obtaining theNd@me
results for the renormalization gf is a non-trivial check on our computation. Like the scalar the-
ory analysis we have again used the Laporta algorithn, [14], to obtaireaormalization group
functions. For instance, the tWwdS S-functions are,[[6],

91
B1(01,092) = [—249CA — 16N; T ] 120

+ [~5068L303 + 243ICA020, + 3129C20105 — 315CA05 — 1328CaAN; TG}
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2
— 624CAN; Tr 002 + 96CANs TE 9103 — 3040 N; T g %}
1
B2(91,92) = [81CAQ: — 55Z0aGi0; + 135Cath 3 — 15Cad3 + 10N T g1 — 48N Tr0102] 1-
(3.4)

where for space reasons we only note the one loop terfa(afi, g2). The full expression is given
in []. We note that the gauge coupling constant is asymptotically free fqpaditive) values
of Ni. A final check on the calculation of the renormalization group functions iseifdfitical
exponents derived from them at the WF fixed point agree with the ygexponents computed
using Vasiliev's method. In this instance the base theory in two dimensions séiehs to seed
this fixed point universal theory is the non-abelian Thirring model (NAWMich can be written
in two ways as

LNV gy D (@) = iy CAA (35)

where in strictly two dimensionAf, O l,l_liTay“L,Ui is an auxiliary field. Various larg®l; critical
exponents are knowr, [Pf,]25] 26], and expanding thesedreipansion relative to six dimensions
the two loop renormalization group functions are in total agreement. Thatahjsems for[(3]1)
indicates that it is correct which is not as remarkable as the observatifjothat (3.5) does
not contain gluonic vertices. The lar@é d-dimensional critical exponents derived frofn 3.5)
contain information on the contribution from the triple, quartic @uihtic vertices of the higher
dimensional gauge theories.

Evidence for the connection of the field theories across the dimensions jigshoestricted
to the basic renormalization group functions. We have also computed the twd/Sccorrec-
tions to the anomalous dimensiong, (d1,9z2), of the flavour non-singlet twist-2 Wilson operators
Py*tDHz .. DHny using [3.1). For the lowest moments we find

Vi2)(01,92) = 2CF 0}

2
+[26841Cag5 — 1200CAG102 — 600CAY5 — 42000k gF + 126497N; T | %
49
Vi3)(91,92) = -Cr Ot
, ) 5 2 Crg?
+[18632Tag] — 10950010 — 420@Cag; — 23564 G + 91047 Te] o ot .
(3.6)

Again evaluating these at the WF fixed point to determine the critical expoheytare in exact
agreement with the leading order lafgeexponent of [28].
One application of[(3]4) is that the location of the conformal window can berméned in an
€ expansion withd = 6 — 2¢. In four dimensionaBU(3) QCD the window is at 9< Ny < 16,
[E9]. By numerically solving
0B10B  0B1OB

@) = Balgngy) = 0, SFLOF2 0RO _ 3.7
B1(91,92) = B2(91,92) 30,30 ~ 39, 391 (3.7)



B-functions in higher dimensional field theories J.A. Gracey

we find one real solution labelled Bywhich is, [§],

CA &
Niw) = 27975667 + [2198168% 3432008, - + O(£?) (3.8)

where we retain the four dimensional trace convention.St(3) we have
N (A)’sue) = 16.785398— 14.73024G + O(£?) . (3.9)

Unlike the situation withO(N) scalar theories the boundary in strictly six dimensions is the same
as in four dimensions.

Further insight into the structure of higher dimensional gauge theoriebegained by fo-
cusing on the extension of Quantum Electrodynamics (QED) to sieaiddimensions. This is
because one can compute to higher order than in the non-abelian cas@lsin eight dimen-
sions where there are a substantial number of 4-gluon operatorse3gective Lagrangians are,

(B3, @],

1 1 ———
Ly = = 4 (0uFuo) (OFF*0) — 50 (8,0"A) (90°Ao) + i'DW)
1 1
L<8>]U(1) = — 7 (0u0uFop) (9H0“FP) — - (3,0"Ay) (8"0°A0)

2 2
HIFDY + ZFRFRFP 4 B FHOR, R (3.10)
where we have extended the gauge fixing sector to eight dimensions faaa éiovariant gauge.
The renormalization group functions of each theory are known to vatmas orders, [[30[]6],
including the electron mass anomalous dimensions. In all cases the criticalesitp derived
from these are in full agreement with the corresponding critical exgerierwhatever order they
are known in largeNt, [B3,[24.[2p]. This again substantiates the picture of a tower of theories
connected via the WF fixed point. Several general features emerge @Bbenalysis. First, we
have verified the result of [BO] that six dimensional QED is asymptotically. figy contrast the
eight dimensional theory is like its four dimensional partner. Under thengstson that there are
no triple photon vertices in any QED formulation in higher dimensions ixetimensional QED
is asymptotically free irD = 2 + 4r dimensions for integer > 1. For both Lagrangiang (3]10)
we have explicitly checked that the Ward-Takahashi identity holds. litiadda novel feature
emerges for the electron anomalous dimension in a linear covariant gauger dimensions the
gauge parameter appears only in the one loop tdrh[[32, 33], and is #eemfter in any explicit
evaluation. The six and eight dimensional theories share the same priuptimtge and two loops
respectively. Therefore, if a rigorous proof of this observation ge®it should be applicable to
all dimensions.

4. Discussion

We have reviewed recent work in six and higher dimensional scalar aungedfield theories
and provided solid evidence for the picture of a tower of connectedidgseiord-dimensions ac-
cessed by the WF fixed point. This extends from strictly two dimensions wiwer®rmal field
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theories give the foundation for the connection. Results in gauge thebio@sa similar vision but
with the observation that structurally eight dimensional scalar theory is simitax @imensional
QCD. From the higher dimensional quantum field theory side the next stemextend loop com-
putations to higher order to refine the fixed point structure as will as to gaia msight into the
operators which drive any infrared fixed points in QCD in the context efuiderlying universal
theory. Form the computational point of view one question is whether thardesper connection
of the Tarasov construction of relatinlg and(d + 2)-dimensional Feynman integrals with the un-
derlying field theories. In other words is there a way of proceeding mm@aimentally via a path
integral construction without having to make the connection at the renorttiatizgoup function
level?
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