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Conformal transformations of leading twist
operators in QCD: nonsinglet operators
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QCD evolution equations in minimal subtraction schemes have a hidden symmetry: the evolution
kernel commutes with three operators that obey the commutation relations of the SL(2) algebra.
The explicit form of these operators can be found by analysis of QCD at the critical point in
non-integer d = 4− 2ε space-time dimensions. Quantum corrections to symmetry generators in
d = 4− 2ε correspond to the conformal symmetry breaking in the physical (d = 4) theory. The
SL(2) commutation relations lead to nontrivial constraints on the evolution kernels. We present
the explicit two loop expressions for the generators of the SL(2) algebra. This result allows one
to restore the nonforward evolution kernels for the nonsinglet operators from the known NNLO
anomalous dimensions.
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1. Introduction

Recent progress in accelerator and detector technologies has made it possible the study of hard
exclusive reactions with identified particles in the final state. The relevant nonperturbative input in
such processes involves operator matrix elements between states with different momenta, dubbed
generalized parton distributions (GPDs), or vacuum-to-hadron matrix elements — the distribution
amplitudes (DAs). The scale dependence of these matrix elements is governed by the renormal-
ization group equations (RGE). The different momenta in the initial and the final state complicates
the RG analysis since in this case one has to keep under control the mixing with operators involv-
ing total derivatives. The matrix of anomalous dimensions (for a given moment) is triangular: the
diagonal entries correspond to the anomalous dimensions that are known to NNLO accuracy [1, 2],
but the nondiagonal contributions require a dedicated calculation.

A direct calculation of nondiagonal matrix elements in higher orders is quite challenging.
However, it has been known for some time [3] that conformal symmetry of the QCD Lagrangian
allows one to restore nondiagonal entries in the mixing matrix at given order of perturbation theory
performing an additional calculation at one order less. This result was used to compute two-loop
evolution kernels for the twist-two operators in QCD [4, 5, 6, 7, 8, 9].

An alternative technique was suggested in [10]. It employs the fact that the majority of QFT
models in d = 4−2ε dimensions possess a nontrivial Wilson-Fisher fixed point. At this (critical)
point a theory enjoys, as a rule, exact scale and conformal invariance (see Ref. [11] for a review).
Therefore one can expect that the RG kernels will commute with the generators of the conformal
group. Of course, the generators differ from their canonical expression due to quantum corrections.
Finally, taking into account that in the MS-like scheme the RG kernels (anomalous dimensions
matrices) do not depend explicitly on the space-time dimension one concludes that the RG kernels
are essentially the same in d = 4 theory and d = 4−2ε theory at the critical point 1.

The utility of this approach was illustrated in [10] on several examples to two- and three-loop
accuracy for scalar theories, and in [12] on the example of the two-loop evolution equation for
flavor-nonsinglet operators in QCD. The two–loop expression for the generator of special confor-
mal transformations was derived in Ref. [13]. Below we discuss the details of calculation and
present the results.

2. Conformal QCD

QCD considered in d = 4−2ε dimension possesses a nontrivial critical point for a large num-
ber of quark flavors. Indeed, the β -function

β (a) = M
da
dM

= 2a
(
− ε− γg

)
, (2.1)

where a = αs/4π and

γg = β0 a+β1a2 +O(a3) , (2.2)

1At least for the models with one coupling constant.
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with

β0 =
11
3

Nc−
2
3

N f , β1 =
2
3
[
17N2

c −5NcN f −3CFN f
]

(2.3)

vanishes (β (a∗) = 0) for

a∗(ε) =−
ε

β0
−
(

ε

β0

)2
β1

β0
+O(ε3) . (2.4)

The vanishing of the β -function implies that the correlators of local gauge-invariant operators trans-
form in a proper way under scale and conformal transformations.

Due to operator mixing the RGEs for a set of the leading twist operators of a given dimension
{Oi, i = 1, . . . ,n}, take the matrix form((

M∂M +β (a)∂a
)
δik + γik(a)

)
Oi = 0 , (2.5)

where γik is the anomalous dimension matrix. The form of the matrix depends strongly on the
choice of the basis operators, Oi, and the symmetry properties of the problem are not transparent
in this formulation. It proves more convenient to consider the generating function for the local-
operators, the so-called light-ray operator [14]. For the twist–two nonsinglet operators we are
interested in it takes the form

[O](x;z1,z2) = ZO(x;z1,z2) = Zq̄(x+ z1n)/nq(x+ z2n) = ∑
m,k

zm
1 zk

2
m!k!

[
q̄(x)

←
D+

m/n
→

D+
kq(x)

]
, (2.6)

where D+ = nµDµ and the Wilson line is implied between the quark fields on the light-cone. The
square brackets denote the renormalized operator in the MS scheme and the renormalization factor
Z is an integral operator acting on the light-cone coordinates of the fields z1,z2

Z = 1+
∞

∑
k=0

1
εk Zk(a) , Zk(a) =

∞

∑
`=k

a`Z(`)
k . (2.7)

The RGE for the light-ray operator [O] takes the form(
M∂M +β (a)∂a +H(a)

)
[O](x;z1,z2) = 0 , (2.8)

where H is an integral operator related to the renormalization factor (2.7) as follows

H(a) = 2γq(a)−M
d

dM
ZZ−1 = 2γq(a)+2

∞

∑
`=1

`a`Z(`)
1 = ∑

k≥1
akH(k) . (2.9)

γq is the quark anomalous dimension. The evolution kernel can be written as [14]

H(a)[O](z1,z2) =
∫ 1

0
dα

∫ 1

0
dβ h(α,β ) [O](zα

12,z
β

21) , (2.10)

where zα
12 = z1ᾱ + z2α and ᾱ = 1−α . The weight function h(α,β ) is given by a series in the

coupling constant

h(α,β ) = ah(1)(α,β )+a2h(2)(α,β )+ . . . (2.11)
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Let us stress here that the fixed-order kernels h(k)(α,β ) in the MS scheme do not depend on the
space-time dimension by construction. It means that the evolution kernel H at the critical point
depends on the space-time dimension d only through the value of the critical coupling, a∗ = a∗(ε),

H(a∗) = a∗H(1)+a2
∗H(2)+ . . .

Thus the evolution kernel in the four dimensional theory inherits all symmetries of the kernel in the
conformal d dimensional theory.

3. Symmetries

It is natural to expect that the evolution kernel H(a∗) commutes with the generators of the
conformal group. Most of the generators, however, act trivially, [Gα ,O] = 0, on the twist-two
operators considered here leaving us with the so-called soft-collinear SL(2,R) subgroup of the
conformal group. At the tree level the generators, Sα = {S+,S0,S−} are given by well known
expressions

S(0)+ = z2
1∂z1 + z2

2∂z2 +2(z1 + z2) , S(0)0 = z1∂z1 + z2∂z2 +2, S(0)− =−∂z1−∂z2 . (3.1)

Beyond the leading order the generators are defined as follows. Let us expand the light-ray opera-
tors over the set of local conformal operators ON and their descendants ∂ k

+ON ,

[O](x,z1,z2) = ∑
N≥0

∑
k≥0

ΨNk(z1,z2)∂
k
+ON(x). (3.2)

The expansion coefficients (coefficient functions) ΨNk(z1,z2) are homogeneous polynomials in
z1,z2 of degree N + k (of course they depend on the coupling constant a∗ or the space-time dimen-
sion d). The transformation properties of the conformal operator ON(x) is determined entirely by
its scaling dimension ∆∗N = d +N−1+ γN(a∗) and spin sN = N +1. Namely,

i
[
D, [ON ](x)

]
=
(
x∂x +∆

∗
N
)
[ON ](x) . (3.3)

for the scale and

i
[
Kµ , [ON ](x)

]
=

[
2xµ(x∂ )− x2

∂
µ +2∆

∗
Nxµ +2xν

(
nµ ∂

∂nν
−nν

∂

∂nµ

)]
[ON ](x) (3.4)

for the special conformal transformations. The variation S+[O] of the light-ray operator under the
special conformal transformation L− = i

2 n̄µKµ is defined as[
L−, [O](x,z1,z2)

]
= ∑

N≥0
∑
k≥0

ΨNk(z1,z2)∂
k
+

[
L−,ON(x)

]
= ∑

N≥0
∑
k≥0

Ψ
′
Nk(z1,z2)∂

k
+ON(x) = S+[O](x,z1,z2). (3.5)

Going from the first to the second line we take into account that the conformal operators and their
descendants form a basis in the space of local operators so that the expression ∂ k

+

[
L−,ON(x)

]
can be re-expanded over the basis operators with a modified coefficient functions Ψ′Nk. The other
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generators S−,S0 are defined in the same way. Such a definition of the generators S±,0 is not explicit
as it involves the functions ΨNk which are not known. Nevertheless it guarantees that the generators
Sα satisfy the SL(2,R) commutation relations,

[S+,S−] = 2S0 [S0,S±] =±S± . (3.6)

The commutation relations result in the following relations

S−ΨNk =−ΨNk−1 , S0 ΨNk = ( jN + k)ΨNk , S+ΨNk = (k+1)(2 jN + k)ΨNk+1 , (3.7)

where the conformal spin jN = (∆∗N +sN)/2. Since the generator S− corresponds to the translations
it does not receive corrections and is given by its classical expression, S− = S(0)− . It follows from
the RG equation that the coefficient functions ΨNk are the eigenfunctions of the evolution kernel,
H(a∗)ΨNk = γN(a∗)ΨNk. This leads immediately to the following expression for the generator S0:

S0 = S(0)0 + γg(a∗)+
1
2
H(a∗) . (3.8)

The generator S+ can be presented as

S+ = S(0)+ +(z1 + z2)

(
γg(a∗)+

1
2
H(a∗)

)
+(z1− z2)∆+(a∗) , (3.9)

where the kernel ∆+(a∗) commutes with S− and S(0)0 and is usually referred to as conformal
anomaly. Let us stress here that in distinction to the scaling (anomalous) dimensions at the critical
point, which are physical observables and therefore do not depend on scheme, the evolution kernel,
H(a∗), conformal anomaly ∆+(a∗) and the coefficient functions ΨNk are scheme-dependent. Their
explicit form cannot be fixed from the symmetry consideration only and requires a separate calcu-
lation. The kernel H(a∗) and the conformal anomaly ∆+(a∗) are, nevertheless, not independent.
It follows from the commutation relations (3.6) that, as was expected, the kernel H(a∗) commutes
with the generators Sα . Two commutation relation, [S−,H] = [S0,H] = 0, are satisfied by con-
struction, while the last one, [S+,H(a∗)] = 0, results in a nontrivial relation between H and ∆+.
Namely,

[S(0)+ ,H(a∗)] = [H(a∗),z1 + z2]

(
γg(a∗)+

1
2
H(a∗)

)
+[H(a∗),(z1− z2)∆+(a∗)] . (3.10)

Expanding Eq. (3.10) in a series in a∗ one gets

[S(0)+ ,H(1)] = 0 ,

[S(0)+ ,H(2)] = [H(1),z1 + z2]

(
γ
(1)
g +

1
2
H(1)

)
+[H(1),(z1− z2)∆

(1)
+ ] , (3.11)

and so on. Since the kernel H(a∗) commutes with S(0)− and S(0)0 these equations demonstrate that the
non-invariant part of the `-loop kernel (with respect to the canonical conformal transformations) is
completely fixed by lower order kernels H(k),∆

(k)
+ , k = 1, . . . , `−1.
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4. Conformal Ward Identity

An explicit form of the generator of special conformal transformations S+, or the conformal
anomaly ∆+(a∗) can be derived from analysis of the conformal Ward Identity (CWI) [7, 9, 13].
It follows from the definition (3.5) of the generator S+ that the correlator of the two light-ray
operators,

G (x;z,w) = 〈[O(n)](0,z) [O(n̄)](x,w)〉= N
∫

DΦe−SR(Φ)[O(n)](0,z) [O(n̄)](x,w) , (4.1)

satisfies the following relation

i
2

n̄µ

(
〈
[
Kµ , [O

(n)](0,z)
]
[O(n̄)](x,w)〉+ 〈[O(n)](0,z)

[
Kµ , [O

(n̄)](x,w)
]
〉
)
=

=

[
(nn̄)S(z)+ −

1
2

x2(n̄∂x)

]
G (x;z,w) = 0, (4.2)

where z= {z1,z2},w= {w1,w2} and we assume that (x ·n) = (x · n̄) = 0. Let us stress here that (4.2)
is a consequence of Eqs. (3.4) and (3.5). On the other hand one can derive Eq. (4.2) from invariance
of the path integral in (4.1) under the change of variables:

Φ 7→Φ+δ
µ

K Φ , δ
µ

K Φ =
(

2xµ(x∂ )− x2
∂µ +2∆Φxµ −2xν

Σµν

)
Φ(x) , (4.3)

see e.g. Ref. [15]. Σµν in (4.3) is the generator of spin rotations,

Σµνc = Σµν c̄ = 0 , Σµνq =
i
2

σµνq , ΣµνAα = gναAµ −gµαAν

and it is convenient to choose the dimensions of the QCD fundamental fields, ∆Φ, as follows [9]:

∆q =
3
2
− ε, ∆A = 1, ∆c = 0 , ∆c̄ = 2− ε . (4.4)

The CWI takes the form

〈δ [O(n)](0,z) [O(n̄)](x,w)〉+ 〈[O(n)](0,z)δ [O(n̄)](x,w)〉= 〈δSR [O
(n)](0,z) [O(n̄)](x,w)〉, (4.5)

where δ = n̄µδ
µ

K , δSR is the corresponding variation of the QCD action (in Euclidean space)

δ
µ

K SR =
∫

ddx2xµ

(
N (x)− (d−2)∂ ρBρ(x)

)
, (4.6)

and

N (x) = 2ε L Y M+g f
R = 2ε

(
1
4

Z2
AF2 +

1
2ξ

(∂A)2
)
, Bρ(x) = Z2

c c̄Dρc− 1
ξ

Aρ(∂A) . (4.7)

It should be noted that the variation (4.6) does not vanish even at d = 4. However, this non-
vanishing term being the BRST variation does not contribute to the correlators of gauge invariant
operators. This implies that a correlator of the nonlocal operator with two (anti)quark fields, 〈Oqq̄〉,
is not a convenient object for analysis in the case of gauge theories. The further analysis goes along
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the lines of Ref. [16]. The operator N has to be written as the sum of renormalized (finite)
operators,

N =−β (a)
a

[
L Y M+g f ]− (γA + γg)ΩA− ∑

Φ6=A
γΦΩΦ +

γA

ξ
[(∂A)2]+ zc∂

µ
Ωµ + zb∂µ [B

µ ] . (4.8)

Here ΩΦ is an EOM operator, ΩΦ = Φ(y)
(

δSR/δΦ(y)
)

and ∂ µΩµ = Ωc̄−Ωc, γΦ are the field
anomalous dimensions, and zc(g,ξ ) and zb(g,ξ ) are some finite coefficients. The last term being
BRST variation does not contribute as well as the ghost EOM to the correlator (4.5). The other
EOM terms together with the gauge fixing term result in the necessary modification of the scaling
dimensions in the expression for the conformal generators. Nontrivial corrections to the S+ come
from the first term on the r.h.s of (4.8). The correlator

〈
∫

ddyN (y)[O(n)](0,z) [O(n̄)](x,w)〉

contains additional divergencies when the arguments of the renormalized operators coincide, i.e.
when y ∼ 0 or y ∼ x and gives nonzero contribution in spite of that it comes with vanishing co-
efficient β (a∗) = 0. It can be shown that the correction to the generator S+ is related to the pair
counterterms to the product of the operators N (y)[O(n)](0,z) ∼ δ (y)Z(ε)[O(n)](0,z). Technical
details can be found in [13]. The one loop correction to the generator takes an extremely simple
form [7, 12]

∆
(1)
+ f (z1,z2) = 2CF

∫ 1

0
dα

∫ 1

0
du

ᾱ

α

[
f (zαu

12 ,z2)− f (z1,zαu
21 )
]

(4.9)

The two loop expression can be written [13] as

∆
(2)
+ f (z1,z2) =

∫ 1

0
dα

∫
ᾱ

0
dβ

[
ω(α,β )+ω

P(α,β )P12

][
f (zα

12,z
β

21)− f (zβ

12,z
α
21)
]

+
∫ 1

0
du
∫ 1

0
dtκ(t)

[
f (zut

12,z2)− f (z1,zut
21)
]
, (4.10)

where P12 f (z1,z2) = f (z2,z1) is the permutation operator. The kernels κ(t), ω(α,β ), ωP(α,β )

receive contributions of three different color structures

κ(t) =C2
F κFF(t)+CFCAκFA(t)+CFβ0κbF(t) ,

ω(α,β ) =C2
F ωFF(α,β )+CFCA ωFA(α,β ) ,

ω
P(α,β ) =C2

F ω
P
FF(α,β )+CFCA ω

P
FA(α,β ) . (4.11)

As an example, we give here the result for the CFCA color structure,

κFA(t) =
2t̄
t

{
(2+ t)

[
Li2(t̄)−Li2(t)

]
− (2− t)

( t
t̄

ln t + ln t̄
)
− π2

6
t− 4

3
− t

2

(
1− t

t̄

)}
,

ωFA(α,β ) = 2
[(

1
α
−α

)[
Li2

(
β

ᾱ

)
−Li2(β )−2Li2(α)− lnα ln ᾱ

]
+

α

τ

(
τ lnτ + τ̄ ln τ̄

)
− β̄ lnα− ᾱ

α
ln ᾱ

]
,

ω
P
FA(α,β ) = 2

[(
ᾱ− 1

ᾱ

)[
Li2

(
α

β̄

)
−Li2(α)− ln ᾱ ln β̄

]
+ατ̄ ln τ̄ +

β 2

β̄
ln ᾱ

]
. (4.12)

Here τ = αβ/ᾱβ̄ . Explicit expressions for the other color structures can be found in Ref. [13].
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