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1. Introduction

In this paper we will present a method to compute the inverse Mellin transform of holonomic
sequences and related to it we will revisit a method from [5] to compute the Mellin transform of
holonomic functions. We emphasize that these methods are implemented in the computer algebra
package HarmonicSums. Now let K be a field of characteristic 0. A function f = f (x) is called
holonomic (or D-finite) if there exist polynomials pd(x), pd−1(x), . . . , p0(x) ∈K[x] (not all pi being
0) such that the following holonomic differential equation holds:

pd(x) f (d)(x)+ · · ·+ p1(x) f ′(x)+ p0(x) f (x) = 0. (1.1)

We emphasize that the class of holonomic functions is rather large due to its closure properties.
Namely, if we are given two such differential equations that contain holonomic functions f (x)
and g(x) as solutions, one can compute holonomic differential equations that contain f (x)+g(x),
f (x)g(x) or

∫ x
0 f (y)dy as solutions. In other words any composition of these operations over known

holonomic functions f (x) and g(x) is again a holonomic function h(x). In particular, if for the inner
building blocks f (x) and g(x) the holonomic differential equations are given, also the holonomic
differential equation of h(x) can be computed.
Of special importance is the connection to recurrence relations. A sequence ( fn)n≥0 with fn ∈K is
called holonomic (or P-finite) if there exist polynomials pd(n), pd−1(n), . . . , p0(n) ∈ K[n] (not all
pi being 0) such that a holonomic recurrence

pd(n) fn+d + · · ·+ p1(n) fn+1 + p0(n) fn = 0 (1.2)

holds for all n ∈ N (from a certain point on). In the following we utilize the fact that holonomic
functions are precisely the generating functions of holonomic sequences: if f (x) is holonomic, then
the coefficients fn of the formal power series expansion

f (x) =
∞

∑
n=0

fnxn

form a holonomic sequence. Conversely, for a given holonomic sequence ( fn)n≥0, the function
defined by the above sum (i.e., its generating function) is holonomic (this is true in the sense
of formal power series, even if the sum has a zero radius of convergence). Note that given a
holonomic differential equation for a holonomic function f (x) it is straightforward to construct a
holonomic recurrence for the coefficients of its power series expansion. For a recent overview of
this holonomic machinery and further literature we refer to [13].

The paper is organized as follows. In Section 2 we revisit a method from [5] to compute the
Mellin transform of holonomic functions, while in Section 3 we present a method to compute the
inverse Mellin transform of holonomic functions.

2. The Mellin Transform of Holonomic Functions

In the following, we deal with the problem:
Given a holonomic function f (x).
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Find, whenever possible, an expression F(n) given as a linear combination of indefinite nested
sums such that for all n ∈ N (from a certain point on) we have

M[ f (x)](n) = F(n). (2.1)

In [5] three different but similar methods to solve the problem above were presented. All three
methods are implemented in the Mathematica package HarmonicSums [8, 6, 7, 4]. All of these
methods rely on the holonomic machinery sketched above. In addition the symbolic summation
package Sigma [15, 16] is used which is based on an algorithmic difference field theory. Here
one of the key ideas is to derive a recurrence relation that contains the Mellin transform as solution
and to execute Sigma’s recurrence solver that finds all solutions that can be expressed in terms
of indefinite nested sums and products [14, 9, 12, 10]; these solutions are called d’Alembertian
solutions. In the following we revisit one of the methods form [5].

We state the following proposition.

Proposition 1. If the Mellin transform of a holonomic function is defined i.e., the integral∫ 1

0
xn f (x)dx

exists, then it is a holonomic sequence.

Proof. Let f (x) be a holonomic function such that the integral
∫ 1

0 xn f (x)dx exists. Using the prop-
erties of the Mellin transform we can easily check that

M[xm f (p)(x)](n) =
(−1)p(n+m)!
(n+m− p)!

M[ f (x)](n+m− p)+
p−1

∑
i=0

(−1)i(n+m)!
(n+m− i)!

f (p−1−i)(1).(2.2)

Finally, we apply the Mellin transform to the holonomic differential equation of f (x) using the
relation above, and we get a holonomic recurrence for M[ f (x)](n).

Now, a method to compute the Mellin transform is obvious:

Let f (x) be a holonomic function. In order to compute the Mellin transform M[ f (x)](n), we can
proceed as follows:

1. Compute a holonomic differential equation for f (x).

2. Use the proposition above to compute a holonomic recurrence for M[ f (x)](n).

3. Compute initial values for the recurrence.

4. Solve the recurrence (with Sigma) to get a closed form representation for M[ f (x)](n).

Note that Sigma finds all solutions that can be expressed in terms of indefinite nested sums and
products. Hence as long as such solutions suffice to solve the recurrence in item 4, we succeed to
compute the Mellin transform M[ f (x)](n).
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Example 2. We want to compute the Mellin transform of

f (x) :=
∫ x

0

√
1− τ

1+ τ
dτ.

We find that
(−3+ x) f ′(x)+2(−1+ x)(1+ x) f ′′(x) = 0

holds, which leads to the recurrence

6
∫ 1

0

√
1− τ

1+ τ
dτ = −2(n−1)nM[ f (x)](n−2)+3nM[ f (x)](n−1)+(n+1)(2n+3)M[ f (x)](n).

Initial values can be computed easily and solving the recurrence leads to

M[ f (x)](n) =

(1+(−1)n)
∫ 1

0

√
1−τ

1+τ
dτ +(−1)n

(
6+8

n
∑

i=1

(−4)i

(2i
i )

)
1+n

− 4(5+4n)(2n)2

(1+2n)(3+2n)
(2n

n

) .
Note that this method can be extended to compute regularized Mellin transforms: given a

holonomic function f (x) such that ∫ 1

0
(xn−1) f (x)dx

exists, then we can compute

M[[ f (x)]+](n) :=
∫ 1

0
(xn−1) f (x)dx

using a slight extension of the method above. For example we can compute

M[[
log(x)
1− x

]+](n) =
∫ 1

0
(xn−1)

log(x)
1− x

dx =
n

∑
i=1

1
i2
.

3. The Inverse Mellin Transform of Holonomic Sequences

In the following, we deal with the problem:
Given a holonomic sequence F(n).
Find, whenever possible, an expression f (x) given as a linear combination of indefinite iterated
integrals such that for all n ∈ N (from a certain point on) we have

M[ f (x)](n) = F(n).

As a first step we want to compute a differential equation for f (x) given a holonomic recurrence
for M[ f (x)](n).

Analyzing (2.2) we see that

M[(−1)pxm+p f (p)(x)](n) =
(n+m+ p)!
(n+m)!

M[ f (x)](n+m)

+
p−1

∑
i=0

(−1)i+p(n+m+ p)!
(n+m+ p− i)!

f (p−1−i)(1). (3.1)
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Hence we get

np M[ f (x)](n+m) = M[(−1)pxm+p f (p)(x)](n)−a(n)M[ f (x)](n+m)

−
p−1

∑
i=0

(−1)i+p(n+m+ p)!
(n+m+ p− i)!

f (p−1−i)(1), (3.2)

where a(n) ∈ K[n] with deg(a(n)) < p. We can use this observation to compute the differential
equation recursively: Let

pd(n) fn+d + · · ·+ p1(n) fn+1 + p0(n) fn = 0 (3.3)

be the holonomic recurrence for M[ f (x)](n). Let k := max
0≤i≤d

(deg(pi(x))) and let c be the coefficient

of nk in the recurrence i.e.,

c =
d

∑
i=0

ci fn+i

for some ci ∈K. For 0≤ i≤ d we replace cink fn+i by

cink fn+i + ci(−1)kxk+i f (k)(x)− ci M[(−1)kxk+i f (k)(x)](n)

and apply (2.2). Considering (3.2) we conclude that we reduced the degree of n. We apply this
strategy until we have removed all appearences of fn+i. At this point we have an equation of the
form

ql(x) f (l)(x)+ · · ·+q1(x) f ′(x)+q0(x) f (x)+
k−1

∑
j=0

r j(n) f ( j)(1) = 0.

where ri(n) ∈ K[n]. If all ri(n) = 0, we are done. If not, we differentiate the differential equation.
In both cases we end up with a holonomic differential equation for f (x).
Let us illustrate this strategy using an example.

Example 3. Consider the recurrence

(2+n) fn+2− fn+1− (n+1) fn = 0. (3.4)

The maximal degree of the coefficients fn+i with 0 ≤ i ≤ 2 is 1 and the coefficient of n of the left
hand side of (3.4) is fn+2− fn. We substitute

n fn+2 → n fn+2− x3 f ′(x)+ M[x3 f ′(x)](n)

−n fn → −n fn + x f ′(x)−M[x f ′(x)](n)

in (3.4) and apply (2.2). This yields

(−x3 + x) f ′− fn+2− fn+1 = 0. (3.5)

since M[x3 f ′(x)](n) =−(n+3) fn+2 + f (1) and M[x f ′(x)](n) =−(n+1) fn + f (1). Next we sub-
stitute

− fn+2 → − fn+2− x2 f (x)+ M[x2 f (x)](n)

4
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− fn+1 → − fn+1− x f (x)+ M[x f (x)](n)

in (3.5) and apply (2.2). Since M[x2 f (x)](n) = fn+2 and M[x f (x)](n) = fn+1, this yields the
differential equation

(−x3 + x) f ′(x)− (x2 + x) f (x) = 0. (3.6)

Our strategy to compute the inverse Mellin transform of holonomic sequences can be summa-
rized as follows:

1. Compute a holonomic recurrence for M[ f (x)](n).

2. Use the method above to compute a holonomic differential equation for f (x).

3. Compute a linear independent set of solutions of the holonomic differential
equation (using HarmonicSums).

4. Compute initial values for M[ f (x)](n).

5. Combine the initial values and the solutions to get a closed form representation for f (x).

Note that HarmonicSums finds all solutions that can be expressed in terms of iterated integrals
over hyperexponential alphabets [14, 9, 12, 11, 5]; these solutions are called d’Alembertian solu-
tions. Hence as long as such solutions suffice to solve the differential equation in item 3 we succeed
to compute f (x).

Example 4. We want to compute the inverse Mellin transform of

fn := (−1)n

(
n

∑
i=1

(−1)i
∑

i
j=1

1
j2

i
−

∞

∑
i=1

(−1)i
∑

i
j=1

1
j2

i

)

We find that

0 = (n+1)(n+2)2 fn− (n+2)
(
n2 +7n+11

)
fn+1

+
(
−n3−5n2−6n+1

)
fn+2 +(n+3)3 fn+3

which leads to the differential equation

0 = −(x−1)2(x+1)x3 f (3)(x)− (x−1)(2x−1)(3x+1)x2 f ′′(x)

−(x−1)(7x−1)x2 f ′(x)− (x−1)x2 f (x)

that has the general solution

s(x) =
c1

x+1
+

c2

x+1

∫ x

0

1
y−1

dy+
c3

x+1

∫ x

0

log(y)
y−1

dy,

for some constants c1,c2,c3. In order to determine these constants we compute∫ 1

0
x0s(x)dx = c1 log(2)+ c2

log(2)2−ζ2

2
+ c3

2ζ3− log(2)ζ2

2
,

5
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∫ 1

0
x1s(x)dx = c1(1− log(2))+ c2

− log(2)2 +ζ2−2
2

+ c3
log(2)ζ2−2ζ3 +2

2
,∫ 1

0
x2s(x)dx = c1

2log(2)−1
2

+ c2
2log(2)2−2ζ2 +1

4
+ c3
−4log(2)ζ2 +8ζ3−3

8
.

Since

f0 =−
∞

∑
i=1

(−1)i
∑

i
j=1

1
j2

i
; f1 = 1+

∞

∑
i=1

(−1)i
∑

i
j=1

1
j2

i
; f2 =−

3
8
−

∞

∑
i=1

(−1)i
∑

i
j=1

1
j2

i

we can deduce that c0 = 0,c1 = 0 and c2 = 1 and hence

fn = M
[

1
x+1

∫ x

0

log(y)
y−1

dy
]
(n).

Note that the method above only works if the result is of the form

cn M[ f (x)](n)+d

for some c,d ∈ R. However, in general we will find results of the form

k

∑
i=0

cn
i M[ fi(x)](n)+d

for some ci,d ∈ R. Hence in order to deal with more general functions we refine our approach and
compute fi(x) and ci for i = 1 to i = k one after another. We illustrate this using the following
example.

Example 5. We want to compute the inverse Mellin transform of

fn :=
n

∑
i=1

(−1)i

i

i

∑
j=1

1
2 j j

.

We find that

0 = 4(1+n)(2+n) fn−2(2+n)(7+2n) fn+1 +
(
2−2n−n2) fn+2 +(3+n)2 fn+3

which leads to the differential equation

0 =
(
−2x+3x2) f (x)+

(
4x−16x2 +13x3) f ′(x)+

(
8x−10x2−9x3 +8x4) f ′′(x)

+
(
4x2−4x3− x4 + x5) f (3)(x)

with the following three linear independent solutions

1
2+ x

,
− log(1− x

2)

2+ x
,

1
4(2+ x)

(
π

2 +2log2(2)+4log(1− x) log(2− x)−2log2(2− x)

+4π log
( x

2
−1
)
+ log

(
(−2+ x)2

4x2

)
−4Li2

(
2

2− x

)
+4Li2(x−1)

)
.

6
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We know that fn has to appear in at least one of the Mellin transforms of these solutions. Indeed
we get

M[
− log(1− x

2)

2+ x
](n) = (−2)n

( n

∑
i=1

(−1)i

i

i

∑
j=1

1
2 j j

+ log(2)
(

log(3)−
n

∑
i=1

(−1)i

i

+
n

∑
i=1

1
(−2)ii

)
+

π2

12
− 5log(2)2

2
−Li2

(
1
4

))
.

Now we can write

fn = fn +
1

(−2)n M[
− log(1− x

2)

2+ x
](n)−

( n

∑
i=1

(−1)i

i

i

∑
j=1

1
2 j j

+ log(2)
(

log(3)−
n

∑
i=1

(−1)i

i

+
n

∑
i=1

1
(−2)ii

)
+

π2

12
− 5log(2)2

2
−Li2

(
1
4

))
=

1
(−2)n M[

− log(1− x
2)

2+ x
](n)− log(2)

(
log(3)−

n

∑
i=1

(−1)i

i
+

n

∑
i=1

1
(−2)ii

)
−π2

12
+

5log(2)2

2
+Li2

(
1
4

)
Next we compute the inverse Mellin transform of gn =

n
∑

i=1

1
(−2)ii . We find that

0 = −2(2+n)gn+1 +(4+n)gn+2 +(3+n)gn+3

which leads to the differential equation

0 = x2(1− x)g(x)+ x2(2− x− x2)g′(x)

with the solution 1
2+x . Note that

M[
1

2+ x
](n) = (−2)n

(
log(3)− log(2)+

n

∑
i=1

1
(−2)ii

)
,

hence we can write

fn =
−1

(−2)n M[
log(2− x)

2+ x
](n)+

18log(2)2−π2

12
+Li2

(
1
4

)
+ log(2)

n

∑
i=1

(−1)i

i
.

It remains to compute the inverse Mellin transform of hn = ∑
n
i=1

(−1)i

i . We derive the recurrence

0 = −(1+n)hn +hn+1 +(2+n)hn+2

which gives rise to the differential equation

0 = x(1− x)h(x)+ x(1− x2)h′(x)

with the solution 1
1+x . Since

M[
1

1+ x
](n) = (−1)n

(
log(2)+

n

∑
i=1

(−1)i

i

)
we finally get

fn =
−1

(−2)n M[
log(2− x)

2+ x
](n)+(−1)n log(2)M[

1
1+ x

](n)+
6log(2)2−π2

12
+Li2

(
1
4

)
.
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